Skip to main content
Log in

A Four-Level Switching Scheme for SAR ADCs with 87.5% Area Saving and 97.85% Energy-Reduction

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new highly energy-efficient switching scheme is presented for successive approximation register analogue-to-digital converters. The proposed method applies a four-level switching strategy to reduce the switching energy to one of the lowest levels reported yet. Also, the controller of this method has low complexity compared to the other procedures. In contrast to the conventional scheme, the switching energy is reduced by 97.85% and the total capacitor size is decreased by 87.5%. Moreover, under the condition of the 50-times Monte-Carlo simulation for capacitor mismatch and reference voltages mismatch (Vref/2 and Vref/4), the mean value of the effective number of bit (ENOB) with standard deviation of 1% is 7.4 and 7.33 bits, respectively, while the ENOB value without any mismatches is 7.51 bits with sampling frequency of 1MS/s. It is noteworthy that the Monte-Carlo simulations are performed in Spectre simulator in Cadence with consideration all of non-idealities such as transistor charge injection, clock jitter and clock feedthrough. In other words, accurate and electrical simulation is performed instead of behavioral simulation. As a result, the bar graph of the ENOB values is plotted in MATLAB. In addition, the maximum and minimum of DNL/INL values are between − 0.3/0.3 LSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. Brenna, A.G. Bonfanti, A. Abba, F. Caponio, A.L. Lacaita, Analysis and optimization of a SAR ADC with attenuation capacitor, in 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2014)

  2. Y.S. Chen, Y.Q. Zhuang, H.L. Tang, A 99.8% energy-reduced two-stage mixed switching scheme for SAR ADC without reset energy. Circuits Syst. Signal Process. 38, 5426–5447 (2019)

    Article  Google Scholar 

  3. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016)

    Article  Google Scholar 

  4. B. Ghanavati, E. Abiri, A. Keyhani, M.R. Salehi, A. Sanyal, An energy efficient SAR ADC with lowest total switching energy consumption. Analog Integr. Circuits Signal Process. 97, 123–133 (2018)

    Article  Google Scholar 

  5. B. Ghanavati, E. Abiri, M.R. Salehi, A. Keyhani, A. Sanyal, LSB split capacitor SAR ADC with 99.2% switching energy reduction. Analog Integr. Circuits Signal Process. 93, 375–382 (2017)

    Article  Google Scholar 

  6. W. Guo, Z. Zhu, A 0.3 V 8-bit 8.9 fJ/con.-step SAR ADC with sub-DAC merged switching for biosensors. Microelectron. J. 68, 44–54 (2017)

    Article  Google Scholar 

  7. L. Jian, R.X. Ding, S.B. Liu, Z.M. Zhu, A highly energy-efficient, highly area-efficient capacitance multiplexing switching scheme for SAR ADC. Analog Integr. Circuits Signal Process. 96, 207–215 (2018)

    Article  Google Scholar 

  8. Z. Jinqiang, M. Niansong, Z. Zhaofeng, M. Lingqin, Vaq-based tri-level switching scheme for SAR ADC. Electron. Lett. 54, 66–68 (2018)

    Article  Google Scholar 

  9. T. Kim, S. Kim, A 12.1 mW, 60 dB SNR, 8-channel beamforming embedded SAR ADC for ultrasound imaging systems, in IEEE Asian Solid-State Circuits Conference (A-SSCC) (2017), pp. 141–144

  10. C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. J. Solid State Circuits 45, 731–740 (2010)

    Article  Google Scholar 

  11. S. Liu, Y. Shen, J. Wang, Z. Zhu, A 10-bit self-clocked SAR ADC with enhanced energy efficiency for multi-sensor applications. IEEE Sens. J. 10, 4223–4233 (2018)

    Article  Google Scholar 

  12. D.J. Moni, S.M. Jose, Design of 10b SAR ADC for biomedical applications, in International Conference on Electronics and Communication Systems (ICECS) (2015), pp. 276–281

  13. D. Osipov, S. Paul, Two-step reset method for energy-efficient SAR ADC switching schemes. Electron. Lett. 52, 816–817 (2016)

    Article  Google Scholar 

  14. C.S. Ragit, S. Badjate, Design of up-down counter as SAR logic for high speed SAR ADC used in health care system, in Conference on Advances in Signal Processing (CASP) (2016), pp. 465–468

  15. E. Rahimi, M. Yavari, Low-efficient high-accuracy switching method for SAR ADCs. Electron. Lett. 50, 499–501 (2014)

    Article  Google Scholar 

  16. S. Ur Rehman, A.M. Kamboh, A CMOS micro-power and area efficient neural recording and stimulation front-end for biomedical applications. Circuits Syst. Signal Process. 34, 1725–1746 (2015)

    Article  Google Scholar 

  17. A. Sanyal, N. Sun, SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electron. Lett. 49, 248–250 (2013)

    Article  Google Scholar 

  18. E.V. Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, B. Nauta, M. Van Elzakker, A 1.9 μW 4.4 fJ/Conversion-step 10b 1 ms/s Charge-Redistribution ADC. ISSCC Dig. Tech. Papers (2008)

  19. W.L. Wu, S.W. Sin, U. Seng-Pan, R.P. Martins, A 10-bit SAR ADC with two redundant decisions and splitted-MSB-cap DAC array, in IEEE Asia Pacific Conference on Circuits and Systems (2012), pp. 268–271

  20. L. Xie, J. Su, J. Liu, G. Wen, Energy-efficient capacitor-splitting DAC scheme with high accuracy for SAR ADC. Electron. Lett. 51, 460–462 (2015)

    Article  Google Scholar 

  21. K. Yadav, P. Patra, A. Dutta, A 43-nW 10-bit 1 ks/s SAR ADC in 180 nm CMOS for biomedical applications, in IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (2015), pp. 21–25

  22. C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48, 482–483 (2012)

    Article  Google Scholar 

  23. Y. Zhang, Y. Li, Z. Zhu, A charge-sharing switching scheme for SAR ADCs in biomedical applications. Microelectron. J. 75, 128–136 (2018)

    Article  Google Scholar 

  24. X. Zhong, B. Zhang, A. Bermak, C.Y. Tsui, M.K. Law, A low-power compression-based CMOS image sensor with microshift-guided SAR ADC, in IEEE Transactions on Circuits and Systems II Exp. Briefs, vol. 65, pp. 1350–1354 (2018)

  25. R. Zhou, S. Liu, J. Liu, R. Ding, J. Wang, S. Huang, Z. Zhu, A 96.88% area-saving and 99.72% energy-reduction switching scheme for SAR ADC with a novel two-step quantisation technique. Analog Integr. Circuits Signal Process. 100, 205–213 (2019)

    Article  Google Scholar 

  26. Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, R.P. Martins, F. Maloberti, U. Seng-Pan, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. J. Solid State Circuits 45, 1111–1121 (2010)

    Article  Google Scholar 

  27. Y. Zhu, U.F. Chio, H.G. Wei, S.W. Sin, S.P. U, R.P. Martins, Linearity analysis on a series-split capacitor array for high-speed SAR ADCs. in 51th Midwest Symposium on Circuits and Systems, pp. 922–925 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzan Rezaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotoudeh, M., Rezaei, F. A Four-Level Switching Scheme for SAR ADCs with 87.5% Area Saving and 97.85% Energy-Reduction. Circuits Syst Signal Process 39, 4792–4809 (2020). https://doi.org/10.1007/s00034-020-01405-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01405-x

Keywords

Navigation