Skip to main content
Log in

Investigation on Estimator of Chirp Rate and Initial Frequency of LFM Signals Based on Modified Discrete Chirp Fourier Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

An accurate estimator of chirp rate and initial frequency of the linear frequency modulation (LFM) signals based on modified discrete chirp Fourier transform (MDCFT) is investigated in this study. The proposed algorithm consists of two banks, namely coarse search and fine search. The coarse search returns a coarse estimate of the parameter by addressing the maximum MDCFT coefficient of a LFM signal. The coarse estimate is refined by fine search algorithms, including spectrum slices and iterative interpolation methods. Compared to conventional fine search approaches, spectrum slices and iterative interpolation methods are always more efficient because they utilize more prior information about the MDCFT results, thus requiring fewer extra computations. Finally, computer simulations are conducted to evaluate the performance of our algorithms by comparison with the Cramer–Rao lower bound. The proposed estimator shows robust performance for various values of the signal parameters with the addition in the additive white Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Aboutanios, B. Mulgrew, Iterative frequency estimation by interpolation on Fourier coefficients. IEEE Trans. Signal Process. 53(4), 1237–1241 (2005). https://doi.org/10.1109/TSP.2005.843719

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Abatzoglou, Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans. Aerosp. Electron. Syst. 22(6), 708–715 (1986). https://doi.org/10.1109/TAES.1986.310805

    Article  Google Scholar 

  3. J. Cao, N. Zhang, L. Song, A fast algorithm for the chirp rate estimation. IEEE Int. Symp. Electron. Des. Test Appl. Hong Kong, China 1, 45–48 (2008). https://doi.org/10.1109/DELTA.2008.107

    Article  Google Scholar 

  4. Z. Deng, L. Ye, M. Fu et al., Further investigation on time-domain maximum likelihood estimation of chirp signal parameters. IET Signal Proc. 7(5), 444–449 (2013). https://doi.org/10.1049/iet-spr.2011.0422

    Article  MathSciNet  Google Scholar 

  5. S. Elgamel, J. Soraghan, Using EMD-FrFT filtering to mitigate very high power interference in chirp tracking radars. IEEE Signal Process. Lett. 18(4), 263–266 (2011). https://doi.org/10.1109/LSP.2011.2115239

    Article  Google Scholar 

  6. P. Fan, X. Xia, Two modified discrete chirp-Fourier transform schemes. Sci. China Ser. F. 44(5), 329–341 (2001). https://doi.org/10.1007/BF02714736

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Gholami, A. Mahmoudi, E. Farshidi, Two-stage estimator for frequency rate and initial frequency in LFM signal using linear prediction approach. Circuits Syst. Signal Process. 38(1), 105–117 (2019). https://doi.org/10.1007/s00034-018-0843-3

    Article  Google Scholar 

  8. X. Guo, H. Sun, H. Gu et al., Modified discrete chirp Fourier transform and its application to SAR moving target detection. ACTA Electron. Sin. 31(11), 25–28 (2003)

    Google Scholar 

  9. H. Hao, Multi component LFM signal detection and parameter estimation based on EEMD–FRFT. Opt. Int. J. Light Electron Opt. 124(23), 6093–6096 (2013). https://doi.org/10.1016/j.ijleo.2013.04.104

    Article  Google Scholar 

  10. K. Heydari, P. Azmi, B. Abbasi et al., Determining the parameters of chirp signals using cyclostationary method in presence of the interference. J. Fundam. Appl. Sci. 8, 478–486 (2016). https://doi.org/10.4314/jfas.8vi2s.63

    Article  Google Scholar 

  11. Y. Jin, P. Duan, H. Ji, Parameter estimation of LFM signals based on scaled ambiguity function. Circuits Syst. Signal Process. 35(12), 4445–4462 (2016). https://doi.org/10.1007/s00034-016-0280-0

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Li, M. Zhan, J. Su et al., Performances Analysis of coherently integrated CPF for LFM signal under low SNR and its application to ground moving target imaging. IEEE Trans. Geosci. Remote Sens. 55(11), 6402–6419 (2017). https://doi.org/10.1109/TGRS.2017.2727508

    Article  Google Scholar 

  13. N. Levanon, E. Mozeson, Radar Signals (Wiley, New Jersey, 2004)

    Book  Google Scholar 

  14. Y. Liu, Fast de-chirp algorithm. J. Data Acquis. Process. 14(2), 175–178 (1999)

    MathSciNet  Google Scholar 

  15. T. Misaridis, J. Jensen, Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(2), 177–191 (2005). https://doi.org/10.1109/tuffc.2005.1406545

    Article  Google Scholar 

  16. H. Ozaktas, O. Arikanet, A. Kutay, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996). https://doi.org/10.1109/78.536672

    Article  Google Scholar 

  17. S. Peleg, B. Porat, Linear FM signal parameter estimation from discrete-time observations. IEEE Trans. on Aerosp. Electron. Syst. 27(4), 607–615 (1991). https://doi.org/10.1109/7.85033

    Article  Google Scholar 

  18. Yang Peng, Zheng Liu, Wenli Jiang, Parameter estimation of multi-component chirp signals based on discrete chirp Fourier transform and population Monte Carlo. SIViP 9(5), 1137–1149 (2015). https://doi.org/10.1007/s11760-013-0552-0

    Article  Google Scholar 

  19. L. Qi, R. Tao, S. Zhou et al., Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. China: Ser. F. 47, 184–198 (2004). https://doi.org/10.1360/02yf0456

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Qian, D. Chen, Q. Yin, Adaptive chirplet based signal approximation. In: Proceedings of ICASSP, Seattle, WA, USA 3, 1781–1784 (1998). https://doi.org/10.1109/ICASSP.1998.681805

    Article  Google Scholar 

  21. P. Rao, F. Taylor, Estimation of instantaneous frequency using the discrete Wigner distribution. Electron. Lett. 26(4), 246–248 (1990). https://doi.org/10.1049/el:19900165

    Article  Google Scholar 

  22. A. Serbes, O. Aldimashki, A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform, in: 25th European Signal Processing Conference (EUSIPCO), Kos, Greece. vol. 1, (2017) pp. 1105–1109. https://doi.org/10.23919/EUSIPCO.2017.8081379

  23. J. Song, Y. Wang, Y. Liu, Iterative interpolation for parameter estimation of LFM signal based on fractional Fourier transform. Circuits Syst. Signal Process. 22(32), 1489–1499 (2013). https://doi.org/10.1007/s00034-012-9517-8

    Article  MathSciNet  Google Scholar 

  24. K.S. Sim, Z.X. Yeap, F.F. Ting et al., The performance of adaptive tuning piecewise cubic hermite interpolation model for signal-to-noise ratio estimation. Int. J. Innov. Comput. Inf. Control 14(5), 1787–1804 (2018). https://doi.org/10.24507/ijicic.14.05.1787

    Article  Google Scholar 

  25. L. Shen, Q. Yin, M. Lu et al., Linear FM signal parameter estimation using STFT and FRFT. Chin. J. Electron. 22(2), 301–307 (2013)

    Google Scholar 

  26. Q. Shen, B. Jiang, V. Cocquempot, Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle attitude dynamics with actuator faults. IEEE Trans. Fuzzy Syst. 21(2), 289–300 (2013). https://doi.org/10.1109/TFUZZ.2012.2213092

    Article  Google Scholar 

  27. Q. Shen, B. Jiang, P. Shi, Adaptive Fault diagnosis for T-S fuzzy systems with sensor faults and system performance analysis. IEEE Trans. Fuzzy Syst. 22(2), 274–285 (2014). https://doi.org/10.1109/TFUZZ.2013.2252355

    Article  Google Scholar 

  28. L. Wu, X. Wei, D. Yang et al., ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps. IEEE Trans. Geosci. Remote Sens. 50(10), 4201–4212 (2012). https://doi.org/10.1109/TGRS.2012.2189220

    Article  Google Scholar 

  29. M. Wang, A. Chan, C. Chui, Linear frequency modulated signal detection using radon-ambiguity transform. IEEE Trans. Signal Process. 46(3), 571–586 (1998). https://doi.org/10.1109/78.661326

    Article  Google Scholar 

  30. G. Xin, H. Sun, S. Wang et al., Comments on ‘discrete chirp-Fourier transform and its application to chirp rate estimation’. IEEE Trans. Signal Process. 50(12), 3115–3116 (2002). https://doi.org/10.1109/TSP.2002.805492

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Xia, Discrete chirp Fourier transform and its application to chirp rate estimation. IEEE Trans. Signal Process. 48(11), 3122–3133 (2000). https://doi.org/10.1109/78.875469

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Xia, Response to “comments on ‘discrete chirp-Fourier transform and its application to chirp rate estimation’”. IEEE Trans. Signal Process. 50(12), 3116 (2002). https://doi.org/10.1109/TSP.2002.805491

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Yi, Z. Chen, R. Hoseinnezhad et al., Joint estimation of location and signal parameters for an LFMemitter. Signal Process. 134(5), 100–112 (2017). https://doi.org/10.1016/j.sigpro.2016.11.014

    Article  Google Scholar 

  34. X. Zhang, J. Cai, L. Liu et al., An integral transform and its applications in parameter estimation of LFM signals. Circuits Syst. Signal Process. 31(3), 1017–1031 (2012). https://doi.org/10.1007/s00034-011-9356-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents, and the National Natural Science Foundation of China (No. 31170668). Sincere gratitude also goes to Dr. Hungyen Lin at Lancaster University in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Xu, Y., Liu, Y. et al. Investigation on Estimator of Chirp Rate and Initial Frequency of LFM Signals Based on Modified Discrete Chirp Fourier Transform. Circuits Syst Signal Process 38, 5861–5882 (2019). https://doi.org/10.1007/s00034-019-01171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01171-5

Keywords

Navigation