Skip to main content
Log in

A 17-to-24 GHz Low-Power Variable-Gain Low-Noise Amplifier in 65-nm CMOS for Phased-Array Receivers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low-power compact variable-gain low-noise amplifier that operates over the frequency band of 17–24 GHz. A design methodology is proposed to determine the optimal size of transistors to achieve the maximum possible gain for current-steering variable-gain amplifiers (VGAs). Moreover, the effect of gain switching on the input and output return losses of current-steering VGAs is analytically studied. Also, various structures of metal-oxide-metal capacitors are examined to find the optimal structure for high-frequency applications. A proof-of-concept VGA is fabricated in a 65-nm bulk CMOS process, and it is employed in a receiver chain. The designed VGA features about 13.3 dB maximum power gain with 5-bit resolution and an average noise figure of 3 dB. The achieved root-mean-square gain error is about 0.45 dB after the fabrication process. The output 1-dB compression point of the VGA is about − 1 dBm at the center of the frequency band. The VGA consumes about 4.2 mW from a 1-V supply, and excluding the pads, it occupies a silicon area of 0.23 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Aparicio, A. Hajimiri, Capacity limits and matching properties of integrated capacitors. IEEE J. Solid-State Circuits 37(3), 384–393 (2002)

    Article  Google Scholar 

  2. F.D. Baumgratz, H. Li, F. Tavernier, S. Bampi, C.E. Saavedra, A 0.4–3.3 GHz low-noise variable gain amplifier with 35 dB tuning range, 4.9 dB NF, and 40 dBm IIP2. Circuits Syst. Signal Process. 94(1), 9–17 (2018)

    Google Scholar 

  3. N.-C. Chen, P.-Y. Chou, H. Graeb, M.P.-H. Lin, High-density MOM capacitor array with novel mortise-tenon structure for low-power SAR ADC, in IEEE Design Automation & Test in Europe Conference & Exhibition (DATE), Lausanne (2017), pp. 1757–1762

  4. M.L. Edwards, J.H. Sinsky, A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Tech. 40(12), 2303–2311 (1992)

    Article  Google Scholar 

  5. M. Elkholy, S. Shakib, J. Dunworth, V. Aparin, K. Entesari, A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS. IEEE Microw. Wirel. Compon. Lett. 28(1), 64–66 (2018)

    Article  Google Scholar 

  6. C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, K.-Y. Lin, A 57–64 GHz low-phase-variation variable-gain amplifier, in IEEE MTT-S International Microwave Symposium Digest, Montreal (2012), pp. 1–3

  7. S. Lee, J. Park, S. Hong, A Ka-band phase-compensated variable-gain CMOS low-noise amplifier. IEEE Microw. Wirel. Compon. Lett. 29(2), 131–133 (2019)

    Article  Google Scholar 

  8. J. Li, Y.-Z. Xiong, Y. Li, W. Wu, Analysis and optimization of cascode structure in power amplifier for X-band phase array radar application. Circuits Syst. Signal Process. 34(1), 1–20 (2015)

    Article  Google Scholar 

  9. W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, T.-W. Huang, 60-GHz 5-bit phase shifter with integrated VGA phase-error compensation. IEEE Trans. Microw. Theory Tech. 61(3), 1224–1235 (2013)

    Article  Google Scholar 

  10. Z. Li, X. Liu, Y. Zhuang, A 12–27 GHz SiGe BiCMOS VGA with phase shift variation compensation. Microelectron. J. 70(12), 97–106 (2017)

    Article  Google Scholar 

  11. A. Niknejad, H. Hashemi, mm-Wave Silicon Technology: 60 GHz and Beyond (Springer, New York, 2008)

    Book  Google Scholar 

  12. B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, NJ, 2011), pp. 305–312

    Google Scholar 

  13. J. Shi, A. Sidelnicov, K.W.J. Chew, M.S. Chin, C. Schippel, J.M.M. dos Santos, F. Schlaphof, L. Meinshausen, J.R. Long, D.L. Harame, Evolution and optimization of BEOL MOM capacitors across advanced CMOS nodes, in IEEE European Solid-State Device Research Conference (ESSDERC), (2018), pp. 190–193

  14. D.-S. Siao, J.-C. Kao, H. Wang, A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS. IEEE Microw. Wirel. Compon. Lett. 24(7), 457–459 (2014)

    Article  Google Scholar 

  15. J.-H. Tsai, J.-W. Wang, C.-H. Wu, A V-band variable gain amplifier with low phase variation using 90-nm CMOS technology. Microw. Opt. Technol. Lett. 56(8), 1946–1949 (2014)

    Article  Google Scholar 

  16. Y. Wang, C.-N Chen, Y.-C. Wu, H. Wang, An E-band variable gain low noise amplifier in 90-nm CMOS process using body-floating and noise reduction techniques, in 13th European Microwave Integrated Circuits Conference (EuMIC), (2018), pp. 277–280

  17. M. Yaghoobi, M. Yavari, M. Haghi Kashani, H. Ghafoorifard, S. Mirabbasi, A 55-to-64 GHz low-power small-area LNA in 65-nm CMOS with 3.8 dB average NF and ~ 12.8 dB power gain. IEEE Microw. Wirel. Compon. Lett. 29(2), 128–130 (2019)

    Article  Google Scholar 

  18. H.-C. Yeh, S. Aloui, C.-C. Chiong, H. Wang, A wide gain control range V-band CMOS variable-gain amplifier with built-in linearizer. IEEE Trans. Microw. Theory Tech. 61(2), 902–913 (2013)

    Article  Google Scholar 

  19. Y. Yi, D. Zhao, X. You, A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution, in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), (2018), pp. 152–155

  20. C.-H. Yu, P.-H. Lo, J.-Y. Lyu, H.-C. Kuo, H.-R. Chuang, Integrated 60-GHz CMOS variable-gain low-noise amplifier and full 360° phase shifter for phased-array RF receiving system, in IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Newport Beach (2014), pp. 59–61

Download references

Acknowledgements

This work has been financially supported in part by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobi, M., Yavari, M. & Ghafoorifard, H. A 17-to-24 GHz Low-Power Variable-Gain Low-Noise Amplifier in 65-nm CMOS for Phased-Array Receivers. Circuits Syst Signal Process 38, 5448–5466 (2019). https://doi.org/10.1007/s00034-019-01169-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01169-z

Keywords

Navigation