Skip to main content
Log in

Adaptive Combination of Distributed Incremental Affine Projection Algorithm with Different Projection Orders

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, the distributed incremental affine projection algorithm (DIAPA) has attracted much attention owing to its good performance for correlated input. However, the DIAPA algorithm with high projection order achieves fast convergence rate but suffers from large steady-state misalignment, and that with low projection order has small steady-state misalignment, but it converges slowly. To overcome this trade-off, in this brief, an adaptive combination of the distributed incremental affine projection algorithm with different projection orders (ACDIAPA-DPO) is proposed, which combines the DIAPA using high projection order with that using low projection order by an adaptive mixing parameter. The mixing parameter is obtained by minimizing the mean square deviation. We discuss the computational complexity of the proposed algorithm and other existing algorithms. Moreover, a novel re-initialization mechanism is introduced to further improve the tracking capability of the ACDIAPA-DPO when the system suddenly changes. Simulations results over the incremental network show the superiority of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.S.E. Abadi, A.R. Danaee, Low computational complexity family of affine projection algorithms over adaptive distributed incremental networks. AEU Int. J. Electron. Commun. 68(2), 97–110 (2014)

    Article  Google Scholar 

  2. J. Arenas-Garcia, A.R. Figueiras-Vidal, A.H. Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006)

    Article  MATH  Google Scholar 

  3. F. Albu, C. Paleologu, J. Benesty, Efficient implementation of a variable projection order affine projection algorithm, in Wireless Communication Systems (ISWCS), UK (2010), pp. 369–373

  4. R. Arablouei, K. Dogancay, Affine projection algorithm with variable projection order, in IEEE International Conference on Communications, Canada (2012), pp. 3681–3685

  5. J.H. Choi, S.H. Kim, W.K. Sang, Adaptive combination of affine projection and NLMS algorithms. Signal Process. 100(7), 64–70 (2014)

    Article  Google Scholar 

  6. F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ferrer, M.D. Diego, A. Gonzalez, G. Piñero, Convex combination of affine projection algorithms, in Proceedings of 17th European Signal Processing Conference, UK (2009)

  8. V. Filipovic, N. Nedic, V. Stojanovic, Robust identification of pneumatic servo actuators in the real situations. Forsch. Ing. 75(4), 183–196 (2011)

    Article  Google Scholar 

  9. A. Khalili, A. Rastegarnia, J.A. Chambers, W.M. Bazzi, An optimum step-size assignment for incremental LMS adaptive networks based on average convergence rate constraint. AEU Int. J. Electron. Commun. 67(3), 263–268 (2013)

    Article  Google Scholar 

  10. A. Khalili, A. Rastegarnia, W.M. Bazzi, S. Sanei, Analysis of incremental augmented affine projection algorithm for distributed estimation of complex-valued signals. Circuits Syst. Signal Process. 36(1), 119–136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.G. Lopes, A.H. Sayed, Distributed processing over adaptive networks, in Proceedings of Adaptive Sensor Array Processing Workshop, Lexington, MA (2006)

  12. C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), France (2006), pp. 584–587

  13. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Li, J. Chambers, C.G. Lopes, A.H. Sayed, Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Lu, H. Zhao, Adaptive combination of affine projection sign subband adaptive filters for modeling of acoustic paths in impulsive noise environments. Int. J. Speech Technol. 19(4), 907–917 (2016)

    Article  Google Scholar 

  16. L. Lu, H. Zhao, B. Chen, Collaborative adaptive Volterra filters for nonlinear system identification in \(\upalpha \)-stable noise environments. J. Frankl. Inst. 353(17), 4500–4525 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Paleologu, J. Benesty, S. Ciochina, A variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 16(8), 1466–1478 (2008)

    Article  Google Scholar 

  18. P. Park, C.H. Lee, J.W. Ko, Mean-square deviation analysis of affine projection algorithm. IEEE Trans. Signal Process. 59(12), 5789–5799 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Qiu, Y. Wei, L. Wu, A novel approach to reliable control of piecewise affine systems with actuator faults. IEEE Trans. Circuits Syst. II Express Briefs 64(8), 957–961 (2017)

    Article  Google Scholar 

  20. M.G. Rabbat, R.D. Nowak, Quantized incremental algorithms for distributed optimization. IEEE J. Sel. Areas Commun. 23(4), 798–808 (2005)

    Article  Google Scholar 

  21. A. Rastegarnia, A. Khalili, W.M. Bazzi, S. Sanei, An incremental LMS network with reduced communication delay. SIViP 10(4), 769–775 (2016)

    Article  Google Scholar 

  22. C. Ren, Z. Wang, Z. Zhao, Adaptive combination of affine projection and NLMS algorithms based on variable step-sizes. Digit. Signal Proc. 59, 86–99 (2016)

    Article  Google Scholar 

  23. L. Shi, H. Zhao, Variable step-size distributed incremental normalised LMS algorithm. Electron. Lett. 52(7), 519–521 (2016)

    Article  Google Scholar 

  24. H.C. Shin, A.H. Sayed, W.J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004)

    Article  Google Scholar 

  25. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  26. H.C. Shin, A.H. Sayed, Mean square performance of a family of affine projection algorithms. IEEE Trans. Signal Process. 52(1), 90–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Song, P. Park, A variable step-size affine projection algorithm with a step-size scaler against impulsive measurement noise. Signal Process. 96(5), 321–324 (2014)

    Article  Google Scholar 

  28. L. Shi, H. Zhao, \(L_{1}\)-norm constrained normalized subband adaptive filter algorithm with variable norm-bound parameter and improved version. SIViP 11(5), 865–871 (2017)

    Article  Google Scholar 

  29. V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40(13–14), 6676–6689 (2016)

    Article  MathSciNet  Google Scholar 

  30. V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process. 33(1), 97–113 (2014)

    Article  MathSciNet  Google Scholar 

  31. V. Stojanovic, N. Nedic, Identification of time-varying OE models in presence of non-Gaussian noise: application to pneumatic servo drives. Int. J. Robust Nonlinear Control 26(18), 3974–3995 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, New York, 2003)

    Google Scholar 

  33. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, 1985)

    MATH  Google Scholar 

  34. Y. Wei, M. Wang, J. Qiu, New approach to delay-dependent \(\text{ H }\infty \) filtering for discrete-time Markovian jump systems with time-varying delay and incomplete transition descriptions. IET Control Theory Appl. 7(5), 684–696 (2013)

    Article  MathSciNet  Google Scholar 

  35. Y. Wei, J. Qiu, H.R. Karimi, Quantized \(\text{ H }\infty \) filtering for continuous-time Markovian jump systems with deficient mode information. Asian J. Control 17(5), 1914–1923 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Wei, J. Qiu, H.R. Karimi, Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults. IEEE Trans. Circuits Syst. I Regul. 64(1), 170–181 (2017)

    Article  Google Scholar 

  37. Y. Yu, H. Zhao, Incremental M-estimate-based least-mean algorithm over distributed network. Electron. Lett. 52(14), 1270–1272 (2016)

    Article  Google Scholar 

  38. Y. Yu, H. Zhao, Robust incremental normalized least mean square algorithm with variable step sizes over distributed networks. Signal Process. 144, 1–6 (2018)

    Article  Google Scholar 

  39. H. Zhao, Y. Yu, S. Gao, X. Zeng, Z. He, Memory proportionate APA with individual activation factors for acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 22(6), 1047–1055 (2014)

    Article  Google Scholar 

  40. S. Zhang, J. Zhang, H. Han, Robust shrinkage normalized sign algorithm in an impulsive noise environment. IEEE Trans. Circuits Syst. II Express Brief 64(1), 91–95 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Science Foundation of People’s Republic of China (Grant Nos. 61571374, 61271340, and 61433011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhao, H. Adaptive Combination of Distributed Incremental Affine Projection Algorithm with Different Projection Orders. Circuits Syst Signal Process 37, 4319–4335 (2018). https://doi.org/10.1007/s00034-018-0761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0761-4

Keywords

Navigation