Skip to main content
Log in

A \(0.058\,\hbox {mm}^2\,\,24\,\upmu \hbox {W}\) Temperature Sensor in \(40\,\hbox {nm}\) CMOS Process with \({\pm }\,0.5\,^{\circ }\hbox {C}\) Inaccuracy from − 55 to \(175\,^{\circ }\hbox {C}\)

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes the design of a high-accuracy smart temperature sensor in the 40 nm standard CMOS process. Due to process scaling, the high threshold voltages, large leakage currents and low intrinsic gains, etc., cause the realization of conventional high performance analog circuits to become very challenging in advanced processes. In the proposed design, some new techniques have been utilized in order to overcome the obstacles due to process scaling. The sensor’s frontend is based on substrate PNP transistors, couple with a two-step zooming ADC. This temperature sensor achieves a two-point calibrated inaccuracy of \({\pm }\,0.5\,^{\circ }\hbox {C}\) and a one-point trimmed inaccuracy of \({\pm }\,0.8\,^{\circ }\hbox {C}\) over a range of temperature from − 55 to \(175\,^{\circ }\hbox {C}\). It draws \(20\,\upmu \hbox {A}\) from a 1.2 V power supply and occupies an area of \(0.0578\,\hbox {mm}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Bakker, J.H. Huijsing, A low-cost high-accuracy CMOS smart temperature sensor, in IEEE Proc. ESSCIRC (1999), pp. 302–305

  2. P. Chen, C.-C. Chen, Y.-H. Peng, K.-M. Wang, Y.-S. Wang, A time-domain SAR smart temperature sensor with curvature compensation and a \(3\sigma \) inaccuracy of \(-0.4\,^{\circ }\text{C} \sim +0.6\,^{\circ }\text{ C }\) over a \(0\,^{\circ }{\rm C}\) to \(90\,^{\circ }{\rm C}\) range. IEEE J. Solid State Circuits 45(3), 600–609 (2010)

  3. R.P. Fisk, S.M. Rezaul Hasan, A calibration-free low-cost process-compensated temperature sensor in 130 nm CMOS. IEEE Sens. J. 11(12), 3316–3329 (2011)

    Article  Google Scholar 

  4. S. Hwang, K. Jabeom, K. Kisoo, L. Hokyu, K. Chulwoo, A \(0.008\,\text{ mm }^{2}\,\,500 \,\,\mu \text{ W }\,\,469\,\,\text{ kS }/\text{ s }\) frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Trans. Circuits Syst. I, 2241–2248 (2013)

    Article  Google Scholar 

  5. K. Kim, H. Lee, S. Jung, C. Kim, A \(366\text{ ks }/\text{ s }\,\,400\text{ uw }\,\,0.0013\,\,{mm}^{2}\) frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock, in Proc. IEEE Custom Integrated Circuits Conf. (CICC) (2009), pp. 203–206

  6. M.K. Law, A. Bermak, A 405-nw CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuits Syst. II(12), 891–895 (2009)

    Google Scholar 

  7. Y.W. Li, H. Lakdawala, A. Raychowdhury, G. Taylor, K. Soumyanath, A \(1.05\,\,\text{ V }\,\,1.6\,\,\text{ mW }\,\,0.45^{\circ }\text{ C }\,\,3\sigma \)-resolution \(\varDelta \varSigma \)-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS, in IEEE ISSCC Dig. Tech. Papers, vol. 1 (2009), pp. 340–341

  8. Y.S. Lin, D. Sylvester, D. Blaauw, An ultra low power 1V, 220nW temperature sensor for passive wireless applications, in Proc. IEEE Custom Integrated Circuits Conf. (CICC), (2008), pp. 507–510

  9. G.A. Maher, O.W. Freitas, T. Williams, Sensor sharing fuel gauge. U.S. Patent Application 13/603,632, 5 Sept 2012

  10. G.C.M. Meijer, Integrated circuits and components for bandgap references and temperature transducers. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (1982)

  11. K. Nagaraj, T. Viswanathan, K. Singhal, J. Vlach, Switched capacitor circuits with reduced sensitivity to amplifier gain. IEEE Trans. Circuits Syst. 34(5), 571–574 (1987)

    Article  Google Scholar 

  12. K. Nagaraj, J. Vlach, T. Viswanathan, K. Singhal, Switched capacitor integrator with reduced sensitivity to amplifier gain. Electron. Lett. 22(21), 1103–1105 (1986)

    Article  Google Scholar 

  13. M.A. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)

    Google Scholar 

  14. M.A. Pertijs, K.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a \(3\sigma \) inaccuracy of \(\pm 0.1\,\,\text{ c }\) from \(-55^{\circ }\text{ c }\) to \(125^{\circ }\text{ c }\). IEEE J. Solid State Circuits 40(12), 2805–2815 (2005)

    Article  Google Scholar 

  15. K. Souri, Y. Chae, K. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of \(\pm 0.15^{\circ }\text{ C }\,\,(3\sigma )\) from \(-55^{\circ }\text{ C }\) to \(125^{\circ }\text{ C }\), in IEEE ISSCC Dig. Tech. Papers, (2012), pp. 208–210

  16. K. Souri, M. Kashmiri, K. Makinwa, A CMOS temperature sensor with an energy-efficient zoom ADC and an Inaccuracy of \(\pm 0.25^{\circ }\text{ C }(3\sigma )\) from \(-55^{\circ }\text{ C }\) to \(125^{\circ }\text{ C }\), in IEEE ISSCC Dig. Tech. Papers (2010), pp. 310–311

  17. K. Souri, K. Makinwa, A \(0.12\,\,\text{ mm }^{2}\,\,7.4 \,\mu \text{ W }\) micropower temperature sensor with an inaccuracy of \(\pm 0.2^{\circ }\text{ C }\,\,(3\sigma )\) from \(-55^{\circ }\text{ C }\) to \(125^{\circ }\text{ C }\), in IEEE Proc. ESSCIRC (2010), pp. 282–285

  18. Y.P. Tsividis, R.W. Ulmer, A CMOS voltage reference. IEEE J. Solid-State Circuits 13(6), 774–778 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Infineon Technologies Asia Pacific Pte. Ltd. and VIRTUS, IC Design Centre of Excellence, Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Siek, L. A \(0.058\,\hbox {mm}^2\,\,24\,\upmu \hbox {W}\) Temperature Sensor in \(40\,\hbox {nm}\) CMOS Process with \({\pm }\,0.5\,^{\circ }\hbox {C}\) Inaccuracy from − 55 to \(175\,^{\circ }\hbox {C}\) . Circuits Syst Signal Process 37, 2278–2298 (2018). https://doi.org/10.1007/s00034-017-0685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0685-4

Keywords

Navigation