Skip to main content
Log in

Multi-objective Low-Noise Amplifier Optimization Using Analytical Model and Genetic Computation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce a methodology for multi-objective radio frequency (RF) low-noise amplifier (LNA) optimization using an analytical model of the MOS transistor in combination with genetic computation. The optimum performance is defined by a figure of merit (FoM) that considers both the power efficiency and the RF performance of the system. Using a short-channel EKV model, the analysis of this FoM suggests that the optimum MOS inversion level lies in the moderate inversion. This knowledge can be used as a strong starting point for the design and optimization procedures. Initially, the LNA component values are extracted using the analytical model. The model does not fully take into consideration the parasitic behaviour of the components in a real design; thus, it produces an approximation of the optimum design. The final circuit fine tuning is achieved with the use of a genetic algorithm that takes advantage of the aforementioned approximation as an initialization aiming at faster convergence. To demonstrate the effectiveness and the operation of this methodology, a 5 GHz common source LNA with inductive degeneration has been designed using the proposed design and optimization methodology. The same design has been statistically investigated using Monte Carlo simulations to address process variability as well as temperature and supply voltage variations. Finally, the optimization procedure is demonstrated also on different topologies including cascode or common gate structures, as well as multi-stage distributed and resistive shunt feedback amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A. Antonopoulos, Nanoscale RF CMOS Transceiver Design, PhD Thesis (Technical University of Crete, Chania, Greece, 2013)

  2. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, R.K. Sharma, P. Sakalas, M. Schroter, CMOS RF noise, scaling and compact modeling for RFIC design, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (USA, 2013), pp. 53–56

  3. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, N. Mavredakis, R.K. Sharma, P. Sakalas, M. Schroter, Modeling of high-frequency noise of silicon CMOS transistors for RFIC design. Int. J. Numer. Model. Electron. Netw. Devices Fields 27(5–6), 802–811 (2014)

    Article  Google Scholar 

  4. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Mavredakis, N. Makris, R.K. Sharma, P. Sakalas, M. Schroter, CMOS small-signal and thermal noise modeling at high frequencies. IEEE Trans. Electron Devices 60(11), 3726–3733 (2013)

    Article  Google Scholar 

  5. V.H.V. Baroncini, O.C. Gouveia-Filho, Design of RF CMOS low noise amplifiers using a current based MOSFET model, in Symposium on Integrated Circuits and Systems Design (SBCCI) (Brazil, 2004), pp. 81–87

  6. M.-A. Chalkiadaki, Characterization and Modeling of Nanoscale MOSFET for Ultra-Low Power RF IC Design, PhD Thesis (EPFL, Lausanne, Switzerland, 2016)

  7. M.-A. Chalkiadaki, C.C. Enz, RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion. IEEE Trans. Microw. Theory Tech. 63(7), 2173–2184 (2015)

    Article  Google Scholar 

  8. H.-H. Chen, M.-H. Chen, C.-Y. Tsai, Optimization of low noise amplifier designs by genetic algorithms, in International Symposium on Electromagnetic Theory (EMTS) (Japan, 2013), pp. 493–496

  9. H.-S. Chen, H.-Y. Tsai, L.-X. Chuo, Y.-K. Tsai, L.-H. Lu, A 5.2 GHz full-integrated RF front-end by T/R switch, LNA, and PA co-design with 3.2-dB NF and +25.9-dBm output power, in IEEE Solid-State Circuits Conference (A-SSCC), (China, 2015), pp. 1–4

  10. C.-C. Chen, Y.-C. Wang, A 2.4/5.2/5.8 triple-band common-gate cascode CMOS low-noise amplifier. Circuits Syst. Signal Process. 39(9), 3477–3489 (2016)

    Google Scholar 

  11. C.-C. Chen, Y.-C. Wang, A dual-wideband CMOS LNA using gain-bandwidth product optimization technique. Circuits Syst. Signal Process. 36(2), 495–510 (2016)

    Article  Google Scholar 

  12. C.C. Enz, M.-A. Chalkiadaki, M. Mangla, Low-power analog/RF circuit design based on the inversion coefficient, in IEEE European Solid-State Circuits Conference (ESSCIRC) (Austria, 2015), pp. 202–208

  13. C.C. Enz, Y. Cheng, MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35(2), 186–201 (2000)

    Article  Google Scholar 

  14. C.C. Enz, E.A. Vittoz, Charge-Based MOS Transistor Modeling: The EKV Compact Model for EKV Model for Low-Power and RF IC Design (Wiley, Chichester, 2006)

    Book  Google Scholar 

  15. C.T. Fu, H. Lakdawala, S.S. Taylor, K. Soumyanath, A 2.5 GHz 32 nm 0.35 \(\text{mm}^2\) 3.5 dB NF-5 dBm \({P}_{1\,{\rm db}}\) fully differential CMOS push-pull LNA with integrated 34dBm T/R switch and ESD protection, in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC), (USA, 2011), pp. 56–58

  16. J.C. Guo, I.-M. Lin, A compact RF CMOS modeling for accurate high-frequency noise simulation in sub-100-nm MOSFETS. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(9), 1684–1688 (2008)

    Article  Google Scholar 

  17. J.C. Guo, Y.-H. Tsai, A broadband and scalable lossy substrate model for RF noise simulation and analysis in nanoscale MOSFETs with various pad structures. IEEE Trans. Microw. Theory Tech. 57(2), 271–281 (2009)

    Article  Google Scholar 

  18. C.-L. Hsieh, M.-H. Wu, J.-H. Cheng, J.-H. Tsai, T.-W. Huang, A 0.6 V 336\(\mu \)W 5-GHz LNA using a low-voltage and gain-enhancement architecture, in IEEE Microwave Symposium Digest (IMS), (USA, 2013), pp. 1–3

  19. G. Konstantopoulos, K. Papathanasiou, A. Samelis, Optimization of RF circuits by expert monitored genetic computation, in IEEE International Symposium on Circuits and Systems (ISCAS) (Greece, 2006), pp. 5247–5250

  20. P.I. Mak, R. Martins, A 0.46 \(\text{ mm }^2\) 4 dB-NF unified receiver front-end for full-band mobile TV in 65 nm CMOS, in IEEE International Conference on Solid-State Circuits Digest of Technical Papers (ISSCC), (USA, 2011), pp. 172–174

  21. A. Mangla, C.C. Enz, J.-M Sallese, Figure-of-merit for optimizing the current efficiency of low-power RF circuits, in International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES) (Poland, 2011), pp. 85–89

  22. N. Mavredakis, M. Bucher, Inversion-level based design of an RF CMOS low-noise amplifier, in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (France, 2006), pp. 74–77

  23. M.Y. Mukadam, O.G. Filho, X. Zhang, A.B. Apsel, Process variation compensation of a 4.6 GHz LNA in 65 nm CMOS, in IEEE International Symposium on Circuits and Systems (ISCAS) (France, 2010), pp. 2490–2493

  24. A. Nieuwoudt, T. Ragheb, H. Nejati, Y. Massoud, Increasing manufacturing yield for wideband RF CMOS LNAs in the presence of process variations, in International Symposium on Quality Electronic Design (ISQED) (USA, 2007), pp. 801–806

  25. K.B. Östman, M. Englund, O. Viitala, M. Kaltiokallio, K. Stadius, K. Koli, J. Ryynanen, A 2.5-GHz receiver front end with Q-boosted post LNA N-path filtering in 40-nm CMOS. IEEE Trans. Microw. Theory Tech. 62(9), 2071–2083 (2014)

    Article  Google Scholar 

  26. A. Papadimitriou, M. Bucher, Optimization of RF low noise amplifier design using analytical model and genetic computation, in Mixed Design of Integrated Circuits and Systems (MIXDES) (Poland, 2017), pp. 302–307

  27. V. Papageorgiou, S. Vlassis, CMOS LNA optimization techniques: comparative study, in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (Greece, 2010), pp. 82–84

  28. M. Rezvani, S. Ardalan, K. Raahemifar, High gain, low power, CMOS current reused LNA with noise optimization, in IEEE Electrical and Computer Engineering Annual Canadian Conference (CCECE), (Canada, 2013), pp. 1–6

  29. J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, Inversion charge linearization in MOSFET modeling and rigorous derivation of the EKV compact model. Solid-State Electron. 57(4), 677–683 (2003)

    Article  Google Scholar 

  30. D.K. Shaeffer, T.H. Lee, A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J. Solid-State Circuits 32(5), 745–759 (1997)

    Article  Google Scholar 

  31. A. Shameli, P. Heydari, A novel optimization technique for ultra-low power RFICs, in International Symposium on Low Power Electronics and Design (ISLPED) (Germany, 2006), pp. 274–279

  32. A. Shameli, P. Heydari, Ultra-low power RFIC design using moderately inverted MOSFETs: an analytical/experimental study, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (USA, 2006), pp. 470–473

  33. I. Song, J. Jeon, H.-S. John, J. Kim, B.G. Park, J.D. Lee, H. Shin, A simple figure of merit for RF MOSFET for low noise amplifier design. IEEE Electron Device Lett. 29(12), 1380–1382 (2008)

    Article  Google Scholar 

  34. T. Stücke, Energieeffiziente HF-Front-End-Schaltungsarchitekturen am Beispiel von ZigBee-Empfängern, PhD Thesis (Universität Duisburg-Essen, Duisburg, Germany, 2007)

  35. T. Stücke, N. Christoffers, R. Kokozinski, S. Kolnsberg, B.J. Hosticka, The impact of technology parameters on the performance of common-gate LNAs, in International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES) (Poland, 2006), pp. 74–77

  36. T. Taris, J.B. Begueret, Y. Deval, A 60 \(\mu \)W LNA for 2.4 GHz wireless sensors network applications, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (USA, 2011), pp. 23–28

  37. S. Thijs, M.I. Natarajan, D. Linten, V. Vassilev, T. Daenen, A. Scholten, R. Degraeve, P. Wambacq, G. Groesenken, ESD protection for a 5.5 GHz LNA in 90 nm RF CMOS-Implementation concepts, constraints and solutions, in IEEE Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD 2004), (USA, 2004), pp. 1–10

  38. S. Toofan, A. Abrishamifar, A. Razhmati, M. Graziano, G.R. Lahiji, S.A. Moniri, A 5.5-GHz 3 mW LNA with inductive degenerative CMOS LNA noise figure calculation in IEEE International Conference on Microelectronics (ICM) (UAE, 2008), pp. 308–312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Papadimitriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadimitriou, A., Bucher, M. Multi-objective Low-Noise Amplifier Optimization Using Analytical Model and Genetic Computation. Circuits Syst Signal Process 36, 4963–4993 (2017). https://doi.org/10.1007/s00034-017-0634-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0634-2

Keywords

Navigation