Skip to main content
Log in

Inverted Wrap-Around Limiting with Bussgang Noise Cancellation Receiver for OFDM Signals

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing (OFDM) is a widely used multicarrier modulation technique. High peak-to-average power ratio (PAPR) is a major drawback of OFDM systems which leads to power inefficiency and signal distortions. The simplest approach is to clip the high amplitudes at some predefined threshold before the signal is applied to the amplifier. The clipping causes in-band distortion as well as out-of-band radiation. Though the out-of-band radiation is reduced using filtering, it causes peak regrowth. The peak regrowth is taken care of using the repeated clipping and filtering. This paper presents the use of a different form of limiting, inverted wrap-around (IWrap). IWrap is presented and evaluated in terms of PAPR reduction and peak regrowth. The results show that IWrap limiting is much better for PAPR reduction as compared to conventional clipping technique. The performance of the proposed limiting technique is investigated with Bussgang noise cancellation iterative receiver for OFDM signals. The results of this iterative receiver with IWrap limiting are presented in terms of bit error probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ali, A. Al-Rabah, M. Masood, T.Y. Al-Naffouri, Receiver-based recovery of clipped OFDM signals for PAPR reduction: a bayesian approach. IEEE Access 2, 1213–1224 (2014). doi:10.1109/ACCESS.2014.2362772

    Article  Google Scholar 

  2. J. Armstrong. New OFDM peak-to-average power reduction scheme, in IEEE 53rd Vehicular Technology Conference, vol. 1, pp. 756–760 (2001). doi:10.1109/VETECS.2001.944945

  3. J. Armstrong, Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electron. Lett. 38(5), 246–247 (2002). doi:10.1049/el:20020175

    Article  Google Scholar 

  4. R. Baxley, G. Zhou, Comparing selected mapping and partial transmit sequence for par reduction. IEEE Trans. Broadcast. 53(4), 797–803 (2007). doi:10.1109/TBC.2007.908335

    Article  Google Scholar 

  5. N. Bibi. Mitigating the effect of soft-limiting for ofdm peak reduction. Ph.D. thesis, School of Computer Science, The University of Manchester (2014)

  6. N. Bibi, B. Cheetham. Clipping noise mitigating iterative receivers for OFDM, in IEEE International Conference on Networked Embedded Systems for Every Application (NESEA), pp. 1–5 (2012). doi:10.1109/NESEA.2012.6474024

  7. N. Bibi, A. Kleerekoper, N. Muhammad, B. Cheetham, Equation-method for correcting clipping errors in OFDM signals. SpringerPlus 5(1), 1–11 (2016). doi:10.1186/s40064-016-2413-0

    Article  Google Scholar 

  8. N. Bibi, A. Kleerkoper, B. Cheetham. Equation-method for reducing the bit-errors caused by clipping distortion in OFDM signals, in Proceedings of the Cambridge Philosophical Society. Cambridge Univ Press (2013)

  9. H. Chen, A. Haimovich, An iterative method to restore the performance of clipped and filtered OFDM signals. IEEE Int. Conf. Commun. 5, 3438–3442 (2003). doi:10.1109/ICC.2003.1204093

    Article  Google Scholar 

  10. L.J. Cimini, N.R. Sollenberger. Peak-to-average power ratio reduction of an ofdm signal using partial transmit sequences in Proceedings of IEEE International Conference on Communications ICC ’99, vol. 1, pp. 511–515 (1999). doi:10.1109/ICC.1999.767992

  11. M.D. Ercegovac, T. Lang, Digital Arithmetic (Elsevier Science, Atlanta, 2003)

    Google Scholar 

  12. S. Fragiacomo, C. Matrakidis, J.J. O’Reilly, Multicarrier transmission peak-to-average power reduction using simple block code. Electron. Lett. 34(10), 953–954 (1998). doi:10.1049/el:19980699

    Article  Google Scholar 

  13. S.J. Heo, H.S. Noh, J. seon No, D.J. Shin. A modified SLM scheme with low complexity for PAPR reduction of OFDM systems, in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007. pp. 1–5 (2007). doi:10.1109/PIMRC.2007.4394422

  14. D. Kim, G.L. Stuber, Clipping noise mitigation for OFDM by decision aided reconstruction. IEEE Commun. Lett. 3, 4–6 (1999)

    Article  Google Scholar 

  15. B.S. Krongold, D.L. Jones. Par reduction in OFDM via active constellation extension, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’03), vol. 4 (2003). doi:10.1109/ICASSP.2003.1202695

  16. B.M. Lee, Y. Kim, An adaptive clipping and filtering technique for PAPR reduction of OFDM signals. Circuits Syst. Signal Process. 32(3), 1335–1349 (2013). doi:10.1007/s00034-012-9512-0

    Article  MathSciNet  Google Scholar 

  17. B.M. Lee, Y. Kim, R.J.P. de Figueiredo, Performance analysis of the clipping scheme with SLM technique for PAPR reduction of OFDM signals in fading channels. Wirel. Pers. Commun. 63(2), 331–344 (2012). doi:10.1007/s11277-010-0136-z

    Article  Google Scholar 

  18. X. Li, L.J. Cimini. Effects of clipping and filtering on the performance of OFDM, in Proceedings of IEEE 47th Vehicular Technology Conference, vol. 3, pp. 1634–1638 (1997). doi:10.1109/VETEC.1997.605835

  19. J. Minkoff, The role of AM-to-PM conversion in memoryless nonlinear systems. IEEE Trans. Commun. 33(2), 139–144 (1985). doi:10.1109/TCOM.1985.1096262

    Article  Google Scholar 

  20. S.H. Muller, J.B. Huber, OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electron. Lett. 33(5), 368–369 (1997). doi:10.1049/el:19970266

    Article  Google Scholar 

  21. H. Ochiai, H. Imai, On clipping for peak power reduction of ofdm signals. IEEE Glob. Telecommun. Conf. 2, 731–735 (2000). doi:10.1109/GLOCOM.2000.891236

    Article  Google Scholar 

  22. H. Ochiai, H. Imai, Performance analysis of deliberately clipped OFDM signals. IEEE Trans. Commun. 50, 89–101 (2002). doi:10.1109/26.975762

    Article  Google Scholar 

  23. H.G. Ryu, B.I. Jin, I.B. Kim, PAPR reduction using soft clipping and ACI rejection in OFDM system. IEEE Trans. Consum. Electron. 48(1), 17–22 (2002). doi:10.1109/TCE.2002.1010087

    Article  Google Scholar 

  24. M.A. Taher, J. Mandeep, M. Ismail, S.A. Samad, M. Islam, Reducing the power envelope fluctuation of OFDM systems using side information supported amplitude clipping approach. Int. J. Circuit Theory Appl. 42, 425–435 (2012)

    Article  Google Scholar 

  25. M.A. Taher, J.M. Singh, M.B. Ismail, S.A. Samad, M.T. Islam, Reducing the papr of OFDM systems by random variable transformation. ETRI J. 35(4), 714–717 (2013)

    Article  Google Scholar 

  26. S. Vangala, A. Sundru, Overlapped scaling tone reservation method for PAPR reduction in OFDM/OQAM systems. Proc. Comput. Sci. 93, 632–638 (2016). doi:10.1016/j.procs.2016.07.251

    Article  Google Scholar 

  27. D. Wulich, Reduction of peak to mean ratio of multicarrier modulation using cyclic coding. Electron. Lett. 32(5), 432 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nargis Bibi.

Appendix

Appendix

This appendix explains the derivation of nonlinear distortion factor \(\alpha \) for IWrap limiting.

The limiting function f(z(n)) for IWrap could be written as follows:

$$\begin{aligned} f(z(n))={\left\{ \begin{array}{ll} z,&{} \text {if } 0\le \text {z}<A\\ 2A-z, &{} A\le \text {z}<\infty \end{array}\right. } \end{aligned}$$
(13)

According to central limit theorem, the OFDM signal may be considered Gaussian for large number of subcarriers. Hence the amplitude values of the signal follow a Rayleigh distribution. The probability density function (Pdf) of an OFDM symbol is:

$$\begin{aligned} P(z) = \frac{2z}{ \sigma ^{2}}\text {e}^{\frac{-z^{2}}{\sigma ^{2}}} \end{aligned}$$
(14)

The expectation from Eq. 9 could be written as:

$$\begin{aligned} \alpha =\frac{E\left\{ {z(n)f(z(n))}\right\} }{ \sigma ^{2}}=\frac{1}{\sigma ^{2}}\int _{0}^{\infty } zf(z)P(z)\hbox {d}z \end{aligned}$$
(15)
$$\begin{aligned} = \frac{1}{\sigma ^{2}}\left( \int _{0}^{A}zf(z)P(z)\hbox {d}z + \int _{A}^{\infty }zf(z)P(z)\hbox {d}z\right) \end{aligned}$$
(16)

solving Eq 16, taking first part

$$\begin{aligned} =\int _{0}^{A}zf(z)P(z)\hbox {d}z \end{aligned}$$
(17)

Putting in f(z) and P(z) into the equation from 13 and 14

$$\begin{aligned} =\int _{0}^{A}z z \frac{2z}{\sigma ^2}\text {e}^{\frac{-z^{2}}{\sigma ^{2}}}\hbox {d}z=\int _{0}^{A}\frac{z^2}{\sigma ^2}\text {e}^{\frac{-z^{2}}{\sigma ^{2}}}2z\hbox {d}z \end{aligned}$$
(18)

Evaluating the integral gives

$$\begin{aligned} \int _{0}^{A}zf(z)P(z)\hbox {d}z= & {} \left[ {\sigma ^{2}}\text {e}^t(t-1)\right] _{0}^{A} \end{aligned}$$
(19)
$$\begin{aligned}= & {} \left[ {\sigma ^{2}}\text {e}^{-\frac{{z}^2}{\sigma ^2}}\left( -\frac{z^2}{\sigma ^2}-1\right) \right] _{0}^{A} \end{aligned}$$
(20)
$$\begin{aligned}= & {} \left[ -\text {e}^{-\frac{z^2}{\sigma ^2}}\left( {z}^2+{\sigma ^2}\right) \right] _{0}^{A}\end{aligned}$$
(21)
$$\begin{aligned} \int _{0}^{A}zf(z)P(z)\hbox {d}z= & {} -\text {e}^{-\frac{A^2}{\sigma ^2}}\left( {A}^2+{\sigma ^2}\right) +\sigma ^{2} \end{aligned}$$
(22)

Solving the second part from 16

$$\begin{aligned} \int _{A}^{\infty }zf(z)P(z)\hbox {d}z= & {} \int _{A}^{\infty }z(2A-z)\frac{2z}{\sigma ^2}{e}^\frac{-z^2}{\sigma ^2}\hbox {d}z \end{aligned}$$
(23)
$$\begin{aligned}= & {} \int _{A}^{\infty }2Az\frac{2z}{\sigma ^2}{e}^\frac{-z^2}{\sigma ^2}\hbox {d}z - \int _{A}^{\infty }z^2\frac{2z}{\sigma ^2}{e}^\frac{-z^2}{\sigma ^2}\hbox {d}z \end{aligned}$$
(24)

Evaluating Eq. 24 gives

$$\begin{aligned} =2{A}^2 {e}^{\frac{-A^2}{\sigma ^2}} + {A\sigma }\sqrt{\pi } \hbox {erfc}\left( \frac{A}{\sigma }\right) - {e}^{\frac{-A^2}{\sigma ^2}}\left( A^2 + \sigma ^2\right) \end{aligned}$$
(25)

Using Eqs. 22 and 25 in Eq. 16

$$\begin{aligned} \alpha= & {} \frac{1}{\sigma ^2}\left( -\text {e}^{-\frac{A^2}{\sigma ^2}}\left( {A}^2+{\sigma ^2}\right) +\sigma ^{2} + 2{A}^2 {e}^{\frac{-A^2}{\sigma ^2}} \right. \nonumber \\&\left. + {A\sigma }\sqrt{\pi } \hbox {erfc}\left( \frac{A}{\sigma }\right) - {e}^{\frac{-A^2}{\sigma ^2}}\left( A^2 + \sigma ^2\right) \right) \end{aligned}$$
(26)
$$\begin{aligned} \alpha= & {} 1 -{2}\text {e}^{-\frac{A^2}{\sigma ^2}} + \frac{A}{\sigma }\sqrt{\pi } \hbox {erfc}\left( \frac{A}{\sigma }\right) \end{aligned}$$
(27)

Using clipping ratio \(\gamma \) = A/\(\sigma \),

$$\begin{aligned} \alpha =1 -{2}\text {e}^{-\gamma ^2} + \gamma \sqrt{\pi } \hbox {erfc}(\gamma ) \end{aligned}$$
(28)

Equation 28 is the distortion factor for IWrap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, N., Muhammad, N. & Cheetham, B. Inverted Wrap-Around Limiting with Bussgang Noise Cancellation Receiver for OFDM Signals. Circuits Syst Signal Process 37, 901–914 (2018). https://doi.org/10.1007/s00034-017-0585-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0585-7

Keywords

Navigation