Skip to main content
Log in

Two Novel Arctangent Normalized Subband Adaptive Filter Algorithms Against Impulsive Interferences

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, two arctangent-based normalized subband adaptive filter (Arc-NSAF) algorithms are proposed, which are derived from two different forms of arctangent cost function and their difference is the order of the arctangent computation and the summation operation of the normalized subband error signal. Benefiting from the excellent property of the arctangent function for suppressing impulsive interferences, the proposed Arc-NSAF algorithms not only possess good robustness against impulsive interferences, but also obtain faster convergence rate for the colored input signals. To further improve the convergence performance of the Arc-NSAFs when identifying sparse system, the proportionate versions of the Arc-NSAF algorithms are also proposed. Simulation results have demonstrated the superiority of the proposed algorithms in impulsive interferences environments as compared to their respective competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S.E. Abadi, S. Kadkhodazadeh, A family of proportionate normalized subband adaptive filter algorithms. J. Frankl. Inst. 348(2), 212–238 (2011)

    Article  MATH  Google Scholar 

  2. J. Benesty, S.L. Gay, An improved PNLMS algorithm, in Proceedings of the ICASSP-02, (USA 2002), pp. 1881–1884

  3. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall, Upper Saddle River, 2002)

    MATH  Google Scholar 

  4. J.J. Jeong, K. Koo, G. Koo, S.W. Kim, Steady-state mean-square deviation analysis of improved normalized subband adaptive filter. Signal Process. 106, 49–54 (2015)

    Article  Google Scholar 

  5. J.H. Kim, J.H. Chang, S.W. Nam, Sign subband adaptive filter with L\(_{1}\)-norm minimisation-based variable step-size. Electron. Lett. 49(21), 1325–1326 (2013)

    Article  Google Scholar 

  6. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  7. K.A. Lee, W.S. Gan, Inherent decorrelating and least perturbation properties of the normalised subband adaptive filter. IEEE Trans. Signal Process. 54(11), 4475–4480 (2006)

    Article  MATH  Google Scholar 

  8. K.A. Lee, W.S. Gan, S.M. Kuo, Subband Adaptive Filter: Theory and Implementation (Wiley, Chichester, 2009)

    Book  Google Scholar 

  9. L. Lu, H. Zhao, Diffusion leaky LMS algorithm: Analysis and implementation. Signal Process. 140, 77–86 (2017)

    Article  Google Scholar 

  10. L. Lu, H. Zhao, C. Chen, A new normalized subband adaptive filter under minimum error entropy criterion. Signal Image Video Process. 10(6), 1097–1103 (2016)

    Article  Google Scholar 

  11. V.J. Mathews, S.H. Cho, Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–454 (1987)

    Article  MATH  Google Scholar 

  12. J. Ni, F. Li, Variable regularisation parameter sign subband adaptive filter. Electron. Lett. 46(24), 1605–1607 (2010)

    Article  Google Scholar 

  13. J. Ni, X. Chen, J. Yang, Two variants of the sign subband adaptive filter with improved convergence rate. Signal Process. 96, 325–331 (2014)

    Article  Google Scholar 

  14. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67–A(5), 19–27 (1984)

    Article  MathSciNet  Google Scholar 

  15. R. Price, A useful theorem for nonlinear devices having Gaussian inputs. IRE Trans. Inf. Theory IT–4, 69–72 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.H. Sayed, Adaptive Filters (Wiley, New York, 2008)

    Book  Google Scholar 

  17. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010)

    Article  Google Scholar 

  18. Z. Shen, Y. Yu, T. Huang, Normalized subband adaptive filter algorithm with combined step size for acoustic echo cancellation. Circuits Syst. Signal Process. 36(7), 2991–3003 (2017)

  19. J.W. Shin, J.W. Yoo, P.G. Park, Variable step-size sign subband adaptive filter. IEEE Signal Process. Lett. 20(2), 173–176 (2013)

    Article  Google Scholar 

  20. M.M. Sondhi, The history of echo cancellation. IEEE Signal Process. 23(5), 95–98 (2006)

    Article  Google Scholar 

  21. P. Wen, S. Zhang, J. Zhang, A novel subband adaptive filter algorithm against impulsive noise and it’s performance analysis. Signal Process. 127, 282–287 (2016)

    Article  Google Scholar 

  22. Z. Yang, Y.R. Zheng, S.L. Grant, Proportionate affine projection sign algorithms for network echo cancellation. IEEE Trans. Speech Audio Process. 19(8), 2273–2284 (2011)

    Article  Google Scholar 

  23. W. Yin, A.S. Mehr, Stochastic analysis of the normalized subband adaptive filter algorithm. IEEE Trans. Circuits Syst. I 58(5), 1020–1033 (2011)

    Article  MathSciNet  Google Scholar 

  24. Y. Yu, H. Zhao, Memory proportionate APSA with individual activation factors for highly sparse system identification in impulsive noise environment, in IEEE International Conference on Wireless Communications and Signal Processing (WCSP), (China 2014), pp. 1–6

  25. Y. Yu, H. Zhao, Novel sign subband adaptive filter algorithms with individual weighting factors. Signal Process. 122, 14–23 (2016)

    Article  Google Scholar 

  26. Y. Yu, H. Zhao, Z. He, B. Chen, A robust band-dependent variable step size NSAF algorithm against impulsive noises. Signal Process. 119, 203–208 (2016)

    Article  Google Scholar 

  27. Y. Yu, H. Zhao, Novel combination schemes of individual weighting factors sign subband adaptive filter algorithm. Int. J. Adapt. Control Signal Process. (2017). doi:10.1002/acs.2755

  28. J. Zeng, Y. Lin, L. Shi, A normalized least mean square algorithm based on the arctangent cost function robust against impulsive interference. Circuits Syst. Signal Process. 35(8), 3040–3047 (2016)

    Article  MATH  Google Scholar 

  29. H. Zhao, Y. Yu, S. Gao, X. Zeng, Z. He, Memory proportionate APA with individual activation factors for acoustic echo cancellation. IEEE/ACM IEEE Trans. Audio Speech Lang. Process. 22(6), 1047–1055 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant: 61473239) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2682014ZT28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianmin Huang.

Appendix

Appendix

In this Section, the detailed derivation of (14) is presented. Using Price’s theorem in [15] and the assumption (1), we have

$$\begin{aligned}&E\left( {\frac{e_{a,i} (k)e_{i,\mathrm{D}} (k)}{\frac{\alpha ^{2}e_{i,\mathrm{D}}^4 (k)}{\left\| {u_i (k)} \right\| ^{2}}+\left\| {u_i (k)} \right\| ^{2}}} \right) \approx P_\mathrm{r} \frac{E\left( {e_{a,i} (k)e_{i_1 ,\mathrm{D}} (k)} \right) }{E\left( {e_{i_1 ,\mathrm{D}}^2 (k)} \right) }E\left( {\frac{e_{i_1 ,\mathrm{D}}^2 (k)}{\frac{\alpha ^{2}e_{i_1 ,\mathrm{D}}^4 (k)}{\left\| {u_i (k)} \right\| ^{2}}+\left\| {u_i (k)} \right\| ^{2}}} \right) \nonumber \\&\quad +\,(1-P_\mathrm{r} )\frac{E\left( {e_{a,i} (k)e_{i_2 ,\mathrm{D}} (k)} \right) }{E\left( {e_{i_2 ,\mathrm{D}}^2 (k)} \right) }E\left( {\frac{e_{i_2 ,\mathrm{D}}^2 (k)}{\frac{\alpha ^{2}e_{i_2 ,\mathrm{D}}^4 (k)}{\left\| {u_i (k)} \right\| ^{2}}+\left\| {u_i (k)} \right\| ^{2}}} \right) \end{aligned}$$
(A1)

with

$$\begin{aligned} e_{i_1 ,\mathrm{D}} (k)=e_{a,i} (k)+\eta _i (k), \quad e_{i_2 ,\mathrm{D}} (k)=e_{a,i} (k)+v_i (k) \end{aligned}$$
(A2)

where \(\eta _i (k)\) and \(v_i (k)\) are zero-mean Gaussian sequences with variances \(\sigma _{\eta _i }^2 =\frac{1}{N}(\kappa +1)\sigma _v^2 \) and \(\sigma _{v_i }^2 =\frac{1}{N}\sigma _v^2 \).

According to the assumption (3), we have

$$\begin{aligned} E\left[ {e_{i_1{,\mathrm{D}}}^2 (k)} \right] =E\left[ {e_{a,i}^2 (k)} \right] +\frac{1}{N}(\kappa +1)\sigma _v^2 , \quad E\left[ {e_{i_2{,\mathrm{D}}}^2 (k)} \right] =E\left[ {e_{a,i}^2 (k)} \right] +\frac{1}{N}\sigma _v^2\nonumber \\ \end{aligned}$$
(A3)

Then, we get

$$\begin{aligned} E\left[ {e_{i{,\mathrm{D}}}^2 (k)} \right]= & {} P_\mathrm{r} E\left[ {e_{i_1{,\mathrm{D}}}^2 (k)} \right] +(1-P_\mathrm{r} )E\left[ {e_{i_2{,\mathrm{D}}}^2 (k)} \right] \nonumber \\= & {} E\left[ {e_{a,i}^2 (k)} \right] +\frac{1}{N}(P_\mathrm{r} \kappa +1)\sigma _v^2 \end{aligned}$$
(A4)

Based on the definitions of the c(k) and \(e_{a,i} (k)\), we have the following equation

$$\begin{aligned} E\left( {e_{a,i}^2 (k)} \right) =\sigma _{u_i }^2 (k)c(k) \end{aligned}$$
(A5)

Therefore, combining (A1)–(A5), (14) can be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Yu, Y. & Huang, T. Two Novel Arctangent Normalized Subband Adaptive Filter Algorithms Against Impulsive Interferences. Circuits Syst Signal Process 37, 883–900 (2018). https://doi.org/10.1007/s00034-017-0583-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0583-9

Keywords

Navigation