Skip to main content
Log in

Design of Gaussian Approximate Filter and Smoother for Nonlinear Systems with Correlated Noises at One Epoch Apart

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, the authors investigate the filtering and smoothing problems of nonlinear systems with correlated noises at one epoch apart. A pseudomeasurement equation is firstly reconstructed with a corresponding pseudomeasurement noise, which is no longer correlated with the process noise. Based on the reconstructed measurement model, new Gaussian approximate (GA) filter and smoother are derived, from which Kalman filter and smoother can be obtained for linear systems. For nonlinear systems, different GA filters and smoothers can be developed through utilizing different numerical methods for computing Gaussian-weighted integrals involved in the proposed solution. Numerical examples concerning univariate nonstationary growth model, passive ranging problem, and target tracking show the efficiency of the proposed filtering and smoothing methods for nonlinear systems with correlated noises at one epoch apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, Englewood Cliffs, NJ, 1979)

    MATH  Google Scholar 

  2. I. Arasaratnam, S. Haykin, Cubature Kalman filter. IEEE Trans. Automat. Contr. 54, 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Arasaratnam, S. Haykin, Cubature Kalman smoothers. Automatica 47, 2245–2250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Bar-Shalom, X.R. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software (Wiley, New York, 2001)

    Book  Google Scholar 

  5. R. Bucy, K. Senne, Digital synthesis of nonlinear filters. Automatica 7, 287–298 (1971)

    Article  MATH  Google Scholar 

  6. G.B. Chang, Marginal unscented Kalman filter for cross-correlated process and observation noise at the same epoch. IET Radar Sonar Navig. 8, 54–64 (2014)

    Article  Google Scholar 

  7. G.B. Chang, Comments on A Gaussian approximation recursive filter for nonlinear systems with correlated noises [Automatica 48(2012) 2290–2297]. Automatica. 50, 655–656 (2014)

  8. L.B. Chang, B.Q. Hu, G.B. Chang, A. Li, Marginalised iterated unscented Kalman filter. IET Control Theory Appl. 6, 847–854 (2012)

    Article  MathSciNet  Google Scholar 

  9. L.B. Chang, B.Q. Hu, A. Li, F.J. Qin, Transformed unscented Kalman filter. IEEE Trans. Automat. Contr. 58, 252–257 (2013)

    Article  MathSciNet  Google Scholar 

  10. J. Duník, M. Šimandl, O. Straka, Unscented Kalman filter: aspects and adaptive setting of scaling parameter. IEEE Trans. Automat. Contr. 57, 2411–2416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Duník, O. Straka, M. Šimandl, Stochastic integration filter. IEEE Trans. Automat. Contr. 58, 1561–1566 (2013)

    Article  MathSciNet  Google Scholar 

  12. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press, Baltimore, Maryland, 2013)

    MATH  Google Scholar 

  13. Z.T. Hu, M. Qin, J. Wang, Y. Liu, Unscented Kalman filter based on the decoupling of correlated noise. J. Comput. Inf. Syst. 9, 2941–2948 (2013)

    Google Scholar 

  14. Y.L. Huang, Y.G. Zhang, X.X. Wang, L. Zhao, Gaussian filter for nonlinear systems with correlated noises at the same epoch. Automatica 60, 122–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Ito, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Contr. 45, 910–927 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Jia, M. Xin, Y. Cheng, Sparse-grid quadrature nonlinear filtering. Automatica 48, 327–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Jia, M. Xin, Y. Cheng, High-degree cubature Kalman filter. Automatica 49, 510–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.J. Julier, J.K. Uhlman, Unscented filtering and nonlinear estimation. Proc. IEEE 92, 401–422 (2004)

    Article  Google Scholar 

  19. C.T. Leondes, J.B. Peller, E.B. Stear, Nonlinear smoothing theory. IEEE Trans. Syst. Sci. Cybern. 6, 63–71 (1970)

    Article  MATH  Google Scholar 

  20. L. Li, Y.Q. Xia, Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica 48, 978–981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Nørgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36, 1627–1638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Simandl, J. Královec, T. Söderström, Anticipative grid design in point-mass approach to nonlinear state estimation. IEEE Trans. Automat. Contr. 47, 699–702 (2002)

    Article  MathSciNet  Google Scholar 

  23. D. Simon, Optimal State Estimation: Kalman, H \(\infty \) , and Nonlinear Approaches (Wiley, New Jersey, 2006)

  24. S. Särkkä, Unscented Rauch–Tung–Striebel smoother. IEEE Trans. Automat. Contr. 53, 845–849 (2008)

    Article  MathSciNet  Google Scholar 

  25. R.F. Souto, J.Y. Ishihara, A robust extended Kalman filter for discrete time systems with uncertain dynamics, measurements and correlated noise, in Proceedings of 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10C12, 2009, pp. 1888–1893

  26. J. Sarmavuori, S. Särkkä, Fourier–Hermite Rauch–Tung–Striebel smoother, in Proceedings of the 20th European Signal Processing Conference, Bucharest, Romania, 27–31 August 2012, pp. 2109–2113

  27. B.N. Vo, W.K. Ma, The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54, 4091–4104 (2006)

    Article  Google Scholar 

  28. X.X. Wang, Y. Liang, Q. Pan, F. Yang, A Gaussian approximation recursive filter for nonlinear systems with correlated noises. Automatica 48, 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. X.X. Wang, Y. Liang, Q. Pan, Z.F. Wang, General equivalence between two kinds of noise-correlation filters. Automatica 50, 3316–3318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. X.X. Wang, Y. Liang, Q. Pan, C.H. Zhao, F. Yang, Design and implementation of Gaussian filter for nonlinear system with randomly delayed measurements and correlated noises. Appl. Math. Comput. 232, 1011–1024 (2014)

    MathSciNet  Google Scholar 

  31. Y.X. Wu, D.W. Hu, M.P. Wu, X.P. Hu, A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process. 54, 2910–2921 (2006)

    Article  Google Scholar 

  32. S.Y. Wang, J.C. Feng, C.K. Tse, Spherical simplex-radial cubature Kalman filter. IEEE Signal Process. Lett. 21, 43–46 (2014)

    Article  Google Scholar 

  33. K. Xiong, H.Y. Zhang, C.W. Chan, Performance evaluation of UKF-based nonlinear filtering. Automatica 42, 261–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.H. Xu, G.M. Dimirovski, Y.W. Jing, C. Shen, UKF design and stability for nonlinear stochastic systems with correlated noises, in 46th IEEE Conference on Decision and Control, New Orleans, USA, vol 12–14 (2007), pp. 6626–6631

  35. D.G. Zhuo, C.Z. Han, R.X. Wei, Z. Lin, Synchronized multi-sensor tracks association and fusion. in Proceedings of the 4th International Conference on Information Fusion, Montreal, QC, Canada (2001)

  36. Y.G. Zhang, Y.L. Huang, Z.M. Wu, N. Li, Quasi-stochastic integration filter for nonlinear estimation. Math. Probl. Eng. 2014, 1–10 (2014)

    MathSciNet  Google Scholar 

  37. Y.G. Zhang, Y.L. Huang, L. Zhao, A general framework solution of Gaussian filter with multiple step randomly delayed measurements. Acta Autom. Sin. 41, 122–135 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Process. 114, 112–116 (2015)

    Article  Google Scholar 

  39. Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Interpolatory cubature Kalman filters. IET Control Theor. Appl. 9, 1731–1739 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61201409 and 61371173, China Postdoctoral Science Foundation Nos. 2013M530147 and 2014T70309, Heilongjiang Postdoctoral Funds LBH-Z13052 and LBH-TZ0505, and the Fundamental Research Funds for the Central Universities of Harbin Engineering University No. HEUCFQ20150407.

Appendix

Appendix

If the joint PDF of random vectors \(\varvec{a}_{i}\) and \(\varvec{b}_{j}\) conditioned on \(\varvec{Z}_{k}\) is Gaussian, i.e.,

$$\begin{aligned} p(\varvec{a}_{i},\varvec{b}_{j}|\varvec{Z}_{k}) =N\left( \left[ \begin{array}{c}\varvec{a}_{i}\\ \varvec{b}_{j} \end{array}\right] ; \left[ \begin{array}{c}{\hat{\varvec{a}}}_{i|k}\\ {\hat{\varvec{b}}}_{j|k} \end{array}\right] ,\left[ \begin{array}{c@{\quad }c} \varvec{P}_{i|k}^{aa}&{}\varvec{P}_{i,j|k}^{ab}\\ (\varvec{P}_{i,j|k}^{ab})^{{T}}&{}\varvec{P}_{j|k}^{bb} \end{array}\right] \right) \end{aligned}$$
(105)

then \(p(\varvec{a}_{i}|\varvec{b}_{j},\varvec{Z}_{k})\) can be computed as Gaussian PDF with mean vector \({\hat{\varvec{a}}}_{i|j,k}\) and corresponding covariance matrix \(\varvec{P}_{i|j,k}^{aa}\) as the unified form:

$$\begin{aligned} {\hat{\varvec{a}}}_{i|j,k}= & {} {\hat{\varvec{a}}}_{i|k} +\varvec{K}_{i}^{a}(\varvec{b}_{j}-{\hat{\varvec{b}}}_{j|k}), \end{aligned}$$
(106)
$$\begin{aligned} \varvec{P}_{i|j,k}^{aa}= & {} \varvec{P}_{i|k}^{aa}-\varvec{K}_{i}^{a}\varvec{P}_{j|k}^{bb}(\varvec{K}_{i}^{a})^{{T}},\end{aligned}$$
(107)
$$\begin{aligned} \varvec{K}_{i}^{a}= & {} \varvec{P}_{i,j|k}^{ab}(\varvec{P}_{j|k}^{bb})^{-1}. \end{aligned}$$
(108)

Proof

By the fact that if the joint PDF is Gaussian, then the marginal PDF is also Gaussian, and using (105), then the PDF \(p(\varvec{b}_{j}|\varvec{Z}_{k})\) can be marginalized as Gaussian, i.e.,

$$\begin{aligned} p(\varvec{b}_{j}|\varvec{Z}_{k})=N(\varvec{b}_{j};{\hat{\varvec{b}}}_{j|k},\varvec{P}_{j|k}^{bb}) \end{aligned}$$
(109)

Let

$$\begin{aligned} \varvec{\Sigma }= \left[ \begin{array}{c@{\quad }c} \varvec{P}_{i|k}^{aa}&{}\varvec{P}_{i,j|k}^{ab}\\ (\varvec{P}_{i,j|k}^{ab})^{{T}}&{}\varvec{P}_{j|k}^{bb} \end{array}\right] \end{aligned}$$
(110)

Rearranging (105), we can obtain

$$\begin{aligned} p(\varvec{a}_{i},\varvec{b}_{j}|\varvec{Z}_{k})=\frac{1}{\sqrt{\left| 2\pi \varvec{\Sigma }\right| }}{\mathrm {exp}}\left( -\frac{1}{2}\left[ {\tilde{\varvec{a}}}_{i|k}^{{T}}\;\tilde{\varvec{b}}_{j|k}^{{T}}\right] \varvec{\Sigma }^{-1}\left[ \begin{array}{c}{\tilde{\varvec{a}}}_{i|k}\\ {\tilde{\varvec{b}}}_{j|k} \end{array}\right] \right) . \end{aligned}$$
(111)

Firstly, according to (110), we can reformulate \(\varvec{\Sigma }\) as follows:

$$\begin{aligned} \varvec{\Sigma }=\left[ \begin{array}{c@{\quad }c@{\quad }c}\varvec{I}_{L}&{}\varvec{K}_{i}^{a}\\ \varvec{0}_{s\times {L}}&{}\varvec{I}_{s}\end{array}\right] \left[ \begin{array}{c@{\quad }c@{\quad }c}\varvec{P}_{i|j,k}^{aa}&{}\varvec{0}_{L\times {s}}\\ \varvec{0}_{s\times {L}}&{}\varvec{P}_{j|k}^{bb}\end{array}\right] \left[ \begin{array}{c@{\quad }c@{\quad }c}\varvec{I}_{L}&{}\varvec{0}_{L\times {s}}\\ (\varvec{K}_{i}^{a})^{{T}}&{}\varvec{I}_{s}\end{array}\right] \end{aligned}$$
(112)

and

$$\begin{aligned} \left| \varvec{\Sigma }\right| =\left| \varvec{P}_{i|j,k}^{aa}\right| \left| \varvec{P}_{j|k}^{bb}\right| , \end{aligned}$$
(113)

where L and s are the dimensions of vectors \(\varvec{a}_{i}\) and \(\varvec{b}_{j}\), respectively, and \(\varvec{K}_{i}^{a}\) and \(\varvec{P}_{i|j,k}^{aa}\) are given by (107)–(108). Exploiting (112), \(\varvec{\Sigma }^{-1}\) can be computed as

$$\begin{aligned} \varvec{\Sigma }^{-1}= \left[ \begin{array}{c@{\quad }c@{\quad }c}\varvec{I}_{L}&{}\varvec{0}_{L\times {s}}\\ -(\varvec{K}_{i}^{a})^{{T}}&{}\varvec{I}_{s}\end{array}\right] \left[ \begin{array}{c@{\quad }c@{\quad }c}(\varvec{P}_{i|j,k}^{aa})^{-1}&{}\varvec{0}_{L\times {s}}\\ \varvec{0}_{s\times {L}}&{}(\varvec{P}_{j|k}^{bb})^{-1}\end{array}\right] \left[ \begin{array}{c@{\quad }c@{\quad }c}\varvec{I}_{L}&{}-\varvec{K}_{i}^{a}\\ \varvec{0}_{s\times {L}}&{}\varvec{I}_{s}\end{array}\right] \end{aligned}$$
(114)

Substituting (113, 114) into (111) and using (109), we have

$$\begin{aligned}&p(\varvec{a}_{i},\varvec{b}_{j}|\varvec{Z}_{k})=\frac{1}{\sqrt{\left| 2\pi \varvec{P}_{i|j,k}^{aa}\right| \left| 2\pi \varvec{P}_{j|k}^{bb}\right| }}\times \nonumber \\&\mathrm {exp}\left\{ -\frac{1}{2}({\tilde{\varvec{a}}}_{i|k} -\varvec{K}_{i}^{a}{\tilde{\varvec{b}}}_{j|k})^{{T}}(\varvec{P}_{i|j,k}^{aa})^{-1} ({\tilde{\varvec{a}}}_{i|k}-\varvec{K}_{i}^{a}{\tilde{\varvec{b}}}_{j|k}) -\frac{1}{2}({\tilde{\varvec{b}}}_{j|k})^{{T}}(\varvec{P}_{j|k}^{bb})^{-1}{\tilde{\varvec{b}}}_{j|k}\right\} \nonumber \\&\qquad \quad =N(\varvec{a}_{i};{\hat{\varvec{a}}}_{i|j,k},\varvec{P}_{i|j,k}^{aa}) p(\varvec{b}_{j}|\varvec{Z}_{k}) \end{aligned}$$
(115)

Employing the Bayesian rule and using (115) yields

$$\begin{aligned} p(\varvec{a}_{i}|\varvec{b}_{j},\varvec{Z}_{k})=\frac{p(\varvec{a}_{i}, \varvec{b}_{j}|\varvec{Z}_{k})}{p(\varvec{b}_{j}|\varvec{Z}_{k})} =N(\varvec{a}_{i};{\hat{\varvec{a}}}_{i|j,k},\varvec{P}_{i|j,k}^{aa}) \end{aligned}$$
(116)

where \({\hat{\varvec{a}}}_{i|j,k}\) and \(\varvec{P}_{i|j,k}^{aa}\) are given by (106, 107). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, Y., Li, N. et al. Design of Gaussian Approximate Filter and Smoother for Nonlinear Systems with Correlated Noises at One Epoch Apart. Circuits Syst Signal Process 35, 3981–4008 (2016). https://doi.org/10.1007/s00034-016-0256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0256-0

Keywords

Navigation