Skip to main content
Log in

An Ultra-Low-Power 9T SRAM Cell Based on Threshold Voltage Techniques

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new nine-transistor (9T) SRAM cell operating in the subthreshold region. In the proposed 9T SRAM cell, a suitable read operation is provided by suppressing the drain-induced barrier lowering effect and controlling the body–source voltage dynamically. Proper usage of low-threshold voltage (L-\(V_{\mathrm{t}}\)) transistors in the proposed design helps to reduce the read access time and enhance the reliability in the subthreshold region. In the proposed cell, a common bit-line is used in the read and write operations. This design leads to a larger write margin without using extra circuits. The simulation results at 90 nm CMOS technology demonstrate a qualified performance of the proposed SRAM cell in terms of power dissipation, power–delay product, write margin, read access time and sensitivity to process, voltage and temperature variations as compared to the other most efficient low-voltage SRAM cells previously presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.R. Ahmadimehr, B. Ebrahimi, A. Afzali-Kusha, A high speed subthreshold SRAM cell design. In Proceedings of Asia Symposium on Quality Electronic Design (2009), pp. 8–13

  2. M. Alioto, Understanding DC behavior of sub-threshold CMOS logic through closed-form analysis. IEEE Trans. Circuits Syst. I 57(7), 1597–1607 (2010)

    Article  MathSciNet  Google Scholar 

  3. B.H. Calhoun, A.P. Chandrakasan, A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 42(3), 680–688 (2007)

    Article  Google Scholar 

  4. I.J. Chang, J.J. Kim, S.P. Park, K. Roy, A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44(2), 650–658 (2009)

    Article  Google Scholar 

  5. B. Ebrahimi, M. Rostami, A. Afzali-Kusha, M. Pedram, Statistical design optimization of FinFET SRAM using back-gate voltage. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(10), 1911–1916 (2011)

    Article  Google Scholar 

  6. B. Ebrahimi, A. Afzali-Kusha, H. Mahmoodi, Robust FinFET SRAM design based on dynamic back-gate voltage adjustment. Els. J. Microelectron. Reliab. 54(11), 2604–2612 (2014)

    Article  Google Scholar 

  7. D. Hodges, H. Jackson, R. Saleh, Analysis and Design of Digital Integrated Circuits, 3rd edn. (McGraw Hill, London, 2006)

    Google Scholar 

  8. Z. Liu, V. Kursun, Characterization of a novel nine-transistor SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(4), 488–492 (2008)

    Article  Google Scholar 

  9. E. Macii, Ultra Low-Power Electronics and Design (Kluwer Academic Publishers, Boston, 2004)

    Book  Google Scholar 

  10. M.H. Moaiyeri, R. Faghih Mirzaee, K. Navi, T. Nikoubin, O. Kavehei, Novel direct designs for 3-input XOR function for low power and high-speed applications. Int. J. Electron. 97(6), 647–662 (2010)

    Article  Google Scholar 

  11. M. Moghaddam, M. Eshghi, M.H. Moaiyeri, A low-voltage single-supply level converter for sub-\(V_{\rm TH}\) operation: 0.3 V to 1.2 V. Int. J. Comput. Appl. 69(2), 14–18 (2013)

    Google Scholar 

  12. S. Mukhopadhyay, H. Mahmoodi, K. Roy, Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1859–1880 (2005)

    Article  Google Scholar 

  13. S. Narendra, V. De, S. Borkar, D. Antoniadis, A.P. Chandrakasan, Full-chip sub-threshold leakage power prediction and reduction techniques for sub-0.18-um CMOS. IEEE J. Solid-State Circuits 39(3), 501–510 (2004)

    Article  Google Scholar 

  14. S. Timarchi, K. Navi, Arithmetic circuits of redundant SUT-RNS. IEEE Trans. Instrum. Meas. 58(9), 2959–2968 (2009)

    Article  Google Scholar 

  15. A. Teman, L. Pergament, O. Cohen, A. Fish, A 250 mV 8 kb 40 nm ultra-low power 9T supply feedback SRAM (SF-SRAM). IEEE J. Solid-State Circuits 46(11), 2713–2726 (2011)

    Article  Google Scholar 

  16. K. Takeda, H. Ikeda, Y. Hagihara, M. Nomura, H. Kobatake, Redefinition of write margin for next-generation SRAM and write-margin monitoring circuit. In Proceedings of IEEE International Conference on Solid–State Circuits (2006), pp. 2602–2611

  17. N. Verma, A.P. Chandrakasan, A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuits 43(1), 141–149 (2008)

    Article  Google Scholar 

  18. A. Wang, B. Calhoun, A.P. Chandrakasan, Sub-Threshold Design for Ultra Low-Power Systems (Springer, New York, 2006)

    Google Scholar 

  19. M. Yamaoka, et al., Low-power embedded SRAM modules with expanded margins for writing. In Proceedings of IEEE International Conference on Solid–State Circuits (2005), pp. 480–611

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Timarchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, M., Timarchi, S., Moaiyeri, M.H. et al. An Ultra-Low-Power 9T SRAM Cell Based on Threshold Voltage Techniques. Circuits Syst Signal Process 35, 1437–1455 (2016). https://doi.org/10.1007/s00034-015-0119-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0119-0

Keywords

Navigation