Skip to main content
Log in

Robust Finite-Time Stability of Fractional Order Linear Time-Varying Impulsive Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the robust finite-time stability (FTS) of fractional order linear time-varying impulsive systems. First, using the fractional order Lyapunov function and generalized Gronwall inequality, some sufficient conditions are given to verify the robust FTS of fractional order linear time-varying systems. Then, the concept of FTS is extended to fractional order impulsive systems. A sufficient condition is given to verify the robust FTS of fractional order linear time-varying impulsive systems by combining the method of average dwell time with fractional order Lyapunov function. Finally, two numerical examples are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.P. Aghababa, Robust finite-time stabilization of fractional-order chaotic systems based on fractional lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012)

    Article  Google Scholar 

  2. F. Amato, M. Ariola, Finite-time control of discrete-time linear system. IEEE Trans. Autom. Control 50(5), 724–729 (2005)

    Article  MathSciNet  Google Scholar 

  3. F. Amato, M. Ariola, C. Cosentino, Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Trans. Autom. Control 55(4), 1003–1008 (2010a)

  4. F. Amato, C. Cosentino, A. Merola, Sufficient conditions for finite-time stability and stabilization of nonlinear quadratic systems. IEEE Trans. Autom. Control 55(2), 430–434 (2010b)

  5. R. Ambrosino, F. Calabrese, C. Cosentino, G. De Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Autom. Control 54(4), 861–865 (2009)

    Article  Google Scholar 

  6. H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Diethelm, The analysis of fractional differential equations, in Lecture Notes in Mathematics (2010)

  8. P. Dorato, Short time stability in linear time-varying systems, in Proceedings of IRE International Convention Record Part 4 (1961), pp. 83–87

  9. H.B. Du, X.Z. Lin, S.H. Li, Finite-time stability and stabilization of switched linear systems, in Proceedings of 48th IEEE Conference Decision and Control, Shanghai, P.R. China (2009), pp. 1938–1943

  10. M. Fe\(\breve{c}\)kan, Y. Zhou, J.R. Wang, On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

  11. G. Garcia, S. Tarbouriech, J. Bernussou, Finite-time stabilization of linear time-varying continuous systems. IEEE Trans. Autom. Control 54(2), 364–369 (2009)

    Article  MathSciNet  Google Scholar 

  12. L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  13. W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  14. W.M. Haddad, V. Chellaboina, S.G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control (Princeton University Press, Princeton, 2006)

    Book  Google Scholar 

  15. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  16. V. Lakshmikantham, S. Leela, J. Devi Vasundhara, Theory of Fractional Dynamic Systems (Cambridge Scientific Publishers, Cambridge, 2009)

    MATH  Google Scholar 

  17. M.P. Lazarević, Finite time stability analysis of \(\text{ PD }^\alpha \) fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269–279 (2006)

    Article  MATH  Google Scholar 

  18. M.P. Lazarević, D.L. Debeljković, Finite time stability analysis of linear autonomous fractional order systems with delayed state. Asian J Control 7(4), 440–447 (2005)

    Article  MathSciNet  Google Scholar 

  19. Y. Li, Y.Q. Chen, I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Z.G. Li, Y.C. Soh, C.Y. Wen, Switched and Impulsive Systems: Analysis, Design and Applications (Lecture Notes in Control and Information Sciences) (Springer-Verlag, New York, Inc., Secaucus, NJ, 2005)

    Google Scholar 

  21. D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003)

    MATH  Google Scholar 

  22. L.J. Long-Jye Sheu et al., Parametric analysis and impulsive synchronization of fractional-order Newton–Leipnik systems. Int. J. Nonlinear Sci. Numer. Simul. 10(1), 33–44 (2009)

    Google Scholar 

  23. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer, Wien, 1997), pp. 291–348

    Chapter  Google Scholar 

  24. F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  25. S. Momani, S. Hadid, Lyapunov stability solutions of fractional integrodifferential equations. Int. J. Math. Math. Sci. 47, 2503–2507 (2004)

    Article  MathSciNet  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  27. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MATH  MathSciNet  Google Scholar 

  28. I. Podlubny, N. Heymans, Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)

    Article  Google Scholar 

  29. J. Sabatier, On stability of fractional order systems, in Plenary Lecture VIII on 3rd IFAC Workshop on Fractional Differentiation and Its Applications (2008)

  30. I. Stamova, G. Stamov, Stability analysis of impulsive functional systems of fractional order. Commun. Nonlinear Sci. Numer. Simul. (2013). doi:10.1016/j.cnsns.2013.07.005

  31. K.C. Sung, K. Bowon, K. Namjip, Stability for caputo fractional differential systems, in Abstract and Applied Analysis (2014), Article ID 631419

  32. V.E. Tarasov, Fractional derivative as fractional power of derivative. Int. J. Math. 18(3), 281–299 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, HEP, Beijing, 2010)

    Google Scholar 

  34. G. Toufik, Existence and controllability of fractional-order impulsive stochastic system with infinite delay. Discuss. Math. Differ. Incl. Control Optim. 33, 65–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. L. Weiss, E.F. Infante, Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  36. D. Xu, Y. Hueng, L. Ling, Existence of positive solutions of an impulsive delay fishing model. Bull. Math. Anal. Appl. 3(2), 89–94 (2011)

    MATH  MathSciNet  Google Scholar 

  37. H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl 328, 1075–1081 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. F.R. Zhang, C.P. Li, Y.Q. Chen, Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ. (2011) Article ID 635165

  39. S. Zhao, J. Sun, L. Liu, Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control 81(11), 1824–1829 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundations of China (11401248, 60974139), Natural Science Foundation of Guangdong Province, China (S2011040003733), and Science and technology project of Huizhou (2012P10). The authors would also like to thank the editor and the reviewers for their constructive comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Yang, Y. Robust Finite-Time Stability of Fractional Order Linear Time-Varying Impulsive Systems. Circuits Syst Signal Process 34, 1325–1341 (2015). https://doi.org/10.1007/s00034-014-9899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9899-x

Keywords

Navigation