Skip to main content
Log in

A Non-Linear Blind Source Separation Method Based on Perceptron Structure and Conjugate Gradient Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The linear mixing model has been considered previously in most of the researches which are devoted to the blind source separation (BSS) problem. In practice, a more realistic BSS mixing model should be the non-linear one. In this paper, we propose a non-linear BSS method, in which a two-layer perceptron network is employed as the separating system to separate sources from observed non-linear mixture signals. The learning rules for the parameters of the separating system are derived based on the minimum mutual information criterion with conjugate gradient algorithm. Instead of choosing a proper non-linear functions empirically, the adaptive kernel density estimation is used in order to estimate the probability density functions and their derivatives of the separated signals. As a result, the score function of the perceptron’s outputs can be estimated directly. Simulations show good performance of the proposed non-linear BSS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Achard, D. Pham, C. Jutten, Blind source separation in post nonlinear mixtures, in: Proceedings of ICA 2001, San Diego, 259–300, (2001)

  2. E. Alan, T. Arias, S. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MATH  Google Scholar 

  3. L.B. Almeida, MISEP-linear and nonlinear ICA based on mutual information. J. Mach. Learn. Res. 4, 1297–1318 (2003)

    Google Scholar 

  4. L.B. Almeida, Linear and nonlinear ICA based on mutual information-the MISEP method. Signal Process. 84(2), 231–245 (2004)

    Article  MATH  Google Scholar 

  5. S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998)

    Article  Google Scholar 

  6. S. Choi, A. Cichocki, H.M. Park, S.Y. Lee, Blind source separation and independent component analysis: A review. Neural Inf. Process. 6(1), 1–57 (2005)

    Article  Google Scholar 

  7. Cichocki A, Amari S, Siwek K, Tanaka T, et al., ICALAB toolboxes, http://www.bsp.brain.riken.jp/ICALAB

  8. Y. Guo, S. Huang, Y. Li, Edge effect elimination in single-mixture blind source separation. Circuits Systems Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  9. A. Honkela, H. Valpola, A. Ilin, J. Karhunen, Blind separation of nonlinear mixtures by variational Bayesian learning. Digit. Signal Process. 17(5), 914–934 (2007)

    Article  Google Scholar 

  10. S. Hosseini, Y. Deville, Recurrent networks for separating extractable-target nonlinear mixtures. Part II. Blind configurations. Signal Processing 93(4), 671–683 (2013)

    Article  Google Scholar 

  11. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (John Wiley, New York, 2001)

    Book  Google Scholar 

  12. A. Hyvärinen, P. Pajunen, Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12(3), 429–439 (1999)

    Article  Google Scholar 

  13. P. Jia, H.Y. Zhang, X.Z. Shi, Blind source separation based on nonparametric density estimation. Circuits Sys. Signal Process. 22(1), 57–67 (2003)

    Article  MATH  Google Scholar 

  14. L.D. Lathauwer, J. Castaing, Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Process. 87(2), 322–336 (2007)

    Article  MATH  Google Scholar 

  15. J.K. Lin, D.G. Grier, J.D. Cowan, Source separation and density estimation by faithful equivariant SOM, Advances in Neural Information Processing Systems, vol. 9 (MIT Press, Cambridge, 1997), pp. 536–542

    Google Scholar 

  16. F. Maazouzi, B. Halima, Type-2 Fuzzy Gaussian mixture models for singing voice classification in commercial music production. Int. J. Signal Imaging Syst. Eng. 6(2), 111–118 (2013)

    Article  Google Scholar 

  17. W. Naanaa, J.M. Nuzillard, A geometric approach to blind separation of nonnegative and dependent source signals. Signal Process. 92(11), 2775–2784 (2012)

    Article  Google Scholar 

  18. P. Pajunen, A. Hyvarinen, J. Karhunen, Nonlinear blind source separation by self-organizing maps, in: Proceedings of ICONIP’96, 2, 1207–1210, (1996)

  19. S. Sun, C. Peng, W. Hou, J. Zheng, Y. Jiang, X. Zheng, Blind source separation with time series variational Bayes expectation maximization algorithm. Digit. Signal Process. 22(1), 17–33 (2012)

    Article  MathSciNet  Google Scholar 

  20. Y. Sun, C. Ridge, F. del Rio, A.J. Shaka, J. Xin, Postprocessing and sparse blind source separation of positive and partially overlapped data. Signal Process. 91(8), 1838–1851 (2011)

    Article  MATH  Google Scholar 

  21. A. Taleb, C. Jutten, S. Olympieff, Source separation in post nonlinear mixtures: an entropy-based algorithm, in: Proceedings of ESANN’98, 2089–2092, (1998)

  22. A. Taleb, C. Jutten, Source separation in post-nonlinear mixtures. IEEE Trans. Signal Process. 47(10), 2807–2820 (1999)

    Article  Google Scholar 

  23. Y. Tan, J. Wang, J. Zurada, Nonlinear blind source separation using a radial basis function network. IEEE Trans. Neural Netw. 12, 124–134 (2001)

    Article  Google Scholar 

  24. F. Wang, H. Li, R. Li, Harmonic signals retrieval approach based on blind source separation. Circuits Sys. Signal Process. 29(4), 669–685 (2010)

    Article  MATH  Google Scholar 

  25. H.H. Yang, S. Amari, Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural Comput. 9(7), 1457–1482 (1997)

    Article  Google Scholar 

  26. L. Zhang, A. Cichocki, S. Amari, Self-adaptive blind source separation based an activation function adaptation. IEEE Transac. Neural Netw. 15(2), 233–244 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61273070), Doctor Candidate Foundation of Jiangnan University (1252050205135130), and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, H. A Non-Linear Blind Source Separation Method Based on Perceptron Structure and Conjugate Gradient Algorithm. Circuits Syst Signal Process 33, 3573–3590 (2014). https://doi.org/10.1007/s00034-014-9818-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9818-1

Keywords

Navigation