Skip to main content
Log in

Long-time behavior of delay differential quasi-variational–hemivariational inequalities and application to contact problems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we study a class of differential quasi-variational–hemivariational inequalities involving time delays. We establish new systems and prove the solvability and the existence of decay solutions. Moreover, we are concerned with long-time behavior of solutions by showing the existence of a compact global attractor to m-semiflow associated with delay differential quasi-variational–hemivariational inequalities. An application to the contact problems driven by dynamic systems is discussed to demonstrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Boston-Basel-Berlin, Birkhäuser (1992)

    Google Scholar 

  2. Anh, N.T.V.: Periodic solutions to differential variational inequalities of parabolic–elliptic type. Taiwan. J. Math. 24(6), 1497–1527 (2020)

    MathSciNet  Google Scholar 

  3. Anh, N.T.V.: On periodic solutions to a class of delay differential variational inequalities. Evol. Equ. Control Theory 11(4), 1309–1329 (2022)

    MathSciNet  Google Scholar 

  4. Anh, N.T.V.: Asymptotically periodic solutions for fractional differential variational inequalities. Fixed Point Theory. 24(2), 459–486 (2023)

    MathSciNet  Google Scholar 

  5. Anh, N.T.V., Ke, T.D.: Asymptotic behavior of solutions to a class of differential variational inequalities. Ann. Polon. Math. 114(2), 147–164 (2015)

    MathSciNet  Google Scholar 

  6. Anh, N.T.V., Ke, T.D.: On the differential variational inequalities of parabolic–elliptic type. Math. Methods Appl. Sci. 40, 4683–4695 (2017)

    MathSciNet  Google Scholar 

  7. Anh, N.T.V., Ke, T.D.: On the differential variational inequalities of parabolic–parabolic type. Acta Appl. Math. 176(5), 25 (2021)

    MathSciNet  Google Scholar 

  8. Anh, N.T.V., Thuy, T.V.: On the delay differential variational inequalities of parabolic-elliptic type. Complex Var. Elliptic Equ. 67(12), 3048–3073 (2022)

    MathSciNet  Google Scholar 

  9. Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Isr. J. Math. 108, 109–138 (1998)

    MathSciNet  Google Scholar 

  10. Caraballo, T., Kloeden, P.E.: Non-autonomous attractor for integro-differential evolution equations. Discrete Contin. Dyn. Syst. Ser. S 2, 17–36 (2009)

    MathSciNet  Google Scholar 

  11. Cen, J., Khan, A.A., Motreanu, D., Zeng, S.: Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. Inverse Prob. 38(6), 065006, 28 (2022)

    MathSciNet  Google Scholar 

  12. Chen, X., Wang, Z.: Differential variational inequality approach to dynamic games with shared constraints. Math. Program. 146, 379–408 (2014)

    MathSciNet  Google Scholar 

  13. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley/Interscience, Hoboken (1983). ((Reprinted: SIAM Publications, Classics in Applied Mathematics 5, 1990))

    Google Scholar 

  14. Efendiev, M.A., Ôtani, M.: Infinite-dimensional attractors for parabolic equations with p-Laplacian in heterogeneous medium. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28(4), 565–582 (2011)

    MathSciNet  Google Scholar 

  15. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    Google Scholar 

  16. Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    MathSciNet  Google Scholar 

  17. Gasinski, L., Migórski, S., Ochal, A.: Existence results for evolution inclusions and variational–hemivariational inequalities. Appl. Anal. 94, 1670–1694 (2015)

    MathSciNet  Google Scholar 

  18. Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi-variational inequalities. Control. Cybern. 29, 91–110 (2000)

    MathSciNet  Google Scholar 

  19. Gwinner, J.: On a new class of differential variational inequalities and a stability result. Math. Program. 139, 205–221 (2013)

    MathSciNet  Google Scholar 

  20. Halanay, A.: Differential Equations, Stability, Oscillations, Time Lags. Academic Press, New York (1996)

    Google Scholar 

  21. Han, L., Pang, J.-S.: Non-zenoness of a class of differential quasi-variational inequalities. Math. Program. 121, 171–199 (2010)

    MathSciNet  Google Scholar 

  22. Han, W., Migórski, S., Sofonea, M.: A class of variational–hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    MathSciNet  Google Scholar 

  23. Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21, 491–516 (2011)

    MathSciNet  Google Scholar 

  24. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces. In: de Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter, Berlin, New York (2001)

  25. Ke, T.D., Loi, N.V., Obukhovskii, V.: Decay solutions for a class of fractional differential variational inequalities. Fract. Calc. Appl. Anal. 18, 531–553 (2015)

    MathSciNet  Google Scholar 

  26. Li, X., Liu, Z.H.: Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, 3569–3597 (2018)

    MathSciNet  Google Scholar 

  27. Li, X., Liu, Z.H., Papageorgiou, N.S.: Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications. Nonlinearity 36, 1323–1348 (2023)

    MathSciNet  Google Scholar 

  28. Liu, Z.H., Loi, N.V., Obukhovskii, V.: Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifur. Chaos 23, 1350125 (2013)

    MathSciNet  Google Scholar 

  29. Liu, Z.H., Zeng, S., Motreanu, D.: Evolutionary problems driven by variational inequalities. J. Differ. Equ. 260, 6787–6799 (2016)

    MathSciNet  Google Scholar 

  30. Liu, Z.H., Migórski, S., Zeng, S.: Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. Differ. Equ. 263, 3989–4006 (2017)

    MathSciNet  Google Scholar 

  31. Liu, Z.H., Motreanu, D., Zeng, S.: Nonlinear evolutionary systems driven by mixed variational inequalities and its applications. Nonlinear Anal. Real World Appl. 42, 409–421 (2018)

    MathSciNet  Google Scholar 

  32. Liu, Z.H., Motreanu, D., Zeng, S.: On the well-posedness of differential mixed quasivariational-inequalities. Topol. Methods Nonlinear Anal. 51, 135–150 (2018)

    MathSciNet  Google Scholar 

  33. Melnik, V.S., Valero, J.: On attractors of multivalued semi-flows and differential inclusions. Set-Valued Anal. 6, 83–111 (1998)

    MathSciNet  Google Scholar 

  34. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear inclusions and hemivariational inequalities. In: Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26, Springer, New York (2013)

  35. Migórski, S., Bai, Y., Zeng, S.: A new class of history-dependent quasi variational–hemivariational inequalities with constraints. Commun. Nonlinear Sci. Numer. Simul. 114, 106686 (2022)

    MathSciNet  Google Scholar 

  36. Migórski, S., Yao, J.C., Zeng, S.: A class of elliptic quasi-variational-hemivariational inequalities with applications. J. Comput. Appl. Math. 421, 114871 (2023)

    MathSciNet  Google Scholar 

  37. Obukhovskii, V., Yao, J.-C.: On impulsive functional differential inclusions with Hille–Yosida operators in Banach spaces. Nonlinear Anal. 73, 1715–1728 (2010)

    MathSciNet  Google Scholar 

  38. Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Program. Ser. A 113(2), 345–424 (2008)

    MathSciNet  Google Scholar 

  39. Sofonea, M., Migórski, S.: Variational–hemivariational inequalities with applications. Chapman and Hall/CRC, New York (2017)

    Google Scholar 

  40. Vrabie, I. I.: \(C_0\)-semigroups and applications. In: North-Holland Mathematics Studies, 191. North-Holland Publishing Co., Amsterdam (2003)

  41. Wang, X., Qi, Y.W., Tao, C.Q., et al.: A class of delay differential variational inequalities. J. Optim. Theory Appl. 172(1), 56–69 (2017)

    MathSciNet  Google Scholar 

  42. Zeng, S., Migórski, S., Liu, Z.H.: Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 31(4), 2829–2862 (2021)

    MathSciNet  Google Scholar 

  43. Zeng, S., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control Optim. 59(2), 1246–1274 (2021)

    MathSciNet  Google Scholar 

  44. Zeng, S., Motreanu, D., Khan, A.A.: Evolutionary quasi-variational–hemivariational inequalities I: existence and optimal control. J. Optim. Theory Appl. 193, 950–970 (2022)

    MathSciNet  Google Scholar 

  45. Zeng, S., Papageorgiou, N.S., Rǎdulescu, V.D.: Nonsmooth dynamical systems: from the existence of solutions to optimal and feedback control. Bull. Sci. Math. 176, 103131, 39 (2022)

    MathSciNet  Google Scholar 

  46. Anh, N.T.V.: Optimal control problem of fractional evolution inclusions with Clarke subdifferential driven by quasi-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 128, 16 (2024)

Download references

Acknowledgements

The final version of this work was completed when the first author, Van Anh, visited Rochester Institute of Technology, USA, based on Abel Visiting Scholarship Program of International Mathematical Union. She would like to take this oppotunity to thank the Niels Hendrik Abel Board and Rochester Institute of Technology for their support and hospitality. Nguyen Thi Van Anh was funded by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2023.STS.51.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Van Anh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Anh, N.T., Van Thuy, T. Long-time behavior of delay differential quasi-variational–hemivariational inequalities and application to contact problems. Z. Angew. Math. Phys. 75, 55 (2024). https://doi.org/10.1007/s00033-024-02202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02202-1

Keywords

Mathematics Subject Classification

Navigation