Skip to main content
Log in

Boundedness and stability of a quasilinear three-species predator–prey model with competition mechanism

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the following quasilinear three-species predator–prey model with competition mechanism

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t} =\nabla \cdot \left( \phi _1\left( u\right) \nabla u\right) -\nabla \cdot \left( u \psi _1\left( u\right) \nabla w\right) + \gamma _1 u w -\theta _1 u -\mu _1 u v, \\ v_{t} =\nabla \cdot \left( \phi _2\left( v\right) \nabla v\right) -\nabla \cdot \left( v \psi _2\left( v\right) \nabla w\right) + \gamma _2 v w -\theta _2 v -\mu _2 u v, \\ w_{t} = D \Delta w - \left( u + v\right) w + \sigma w\left( 1 - w\right) , \end{array}\right. } \end{aligned}$$

in a bounded smooth domain \(\Omega \subset {\mathbb {R}}^{n}\left( n\ge 2\right) \). The parameters \(D, \gamma _i, \theta _i, \sigma >0\) and \( \mu _i\ge 0\) are constants with \(i=1,2\). The functions \(\phi _i\left( s\right) \) and \(\psi _i\left( s\right) \) satisfy

$$\begin{aligned} \phi _i\left( s\right) \ge d_i \left( s+1\right) ^{\alpha _i} \text { and } \psi _i\left( 0\right) =0\le \psi _i\left( s\right) \le \chi _i \left( s+1\right) ^{\beta _i-1} \end{aligned}$$

for all \(s\ge 0\) with \(d_i>0, \chi _i>0, \alpha _i, \beta _i\in {\mathbb {R}}\left( i=1,2\right) \). It is proved that its corresponding homogeneous Neumann initial-boundary problem possess a global bounded classical solution, provided that

$$\begin{aligned} \alpha _i>\max \left\{ \beta _i-\frac{2}{n}, -\frac{2}{n}\right\} \left( i=1,2\right) . \end{aligned}$$

Moreover, it is shown that when \(\alpha _i =0, \beta _i =1\left( i=1,2\right) \), the prey-only, semi-coexistence and coexistence steady states of the above model are globally asymptotically stable under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Kareiva, P., Odell, G.: Swarms of predators exhibit“preytaxis’’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987)

    Article  Google Scholar 

  2. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 97, 5–60 (1965)

    Article  Google Scholar 

  3. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 119, 12–13 (1927)

    Article  Google Scholar 

  4. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  Google Scholar 

  5. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Article  Google Scholar 

  6. Wu, D., Yang, Y., Wu, P.: Impacts of prey-taxis and nonconstant mortality on a spatiotemporal predator-prey system. Math. Comput. Simul. 208, 283–300 (2023)

    Article  MathSciNet  Google Scholar 

  7. Mi, Y., Song, C., Wang, Z.: Global boundedness and dynamics of a diffusive predator-prey model with modified Leslie–Gower functional response and density-dependent motion. Commun. Nonlinear Sci. Numer. Simul. 119, 107115 (2023)

    Article  MathSciNet  Google Scholar 

  8. Luo, D., Wang, Q.: Global bifurcation and pattern formation for a reaction–diffusion predator-prey model with prey-taxis and double Beddington–Deangelis functional responses. Nonlinear Anal. Real World Appl. 67, 103638 (2022)

    Article  MathSciNet  Google Scholar 

  9. Winkler, M.: Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation. J. Differ. Equ. 263, 4826–4869 (2017)

    Article  MathSciNet  Google Scholar 

  10. Xiang, T.: Global dynamics for a diffusive predator–prey model with prey-taxis and classical Lotka–Volterra kinetics. Nonlinear Anal. Real World Appl. 39, 278–299 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Wang, M.: Global solution of a diffusive predator–prey model with prey-taxis. Comput. Math. Appl. 77, 2676–2694 (2019)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Ma, R.: Positive steady-state solutions for predator–prey systems with prey-taxis and Dirichlet conditions. Nonlinear Anal. Real World Appl. 68, 103669 (2022)

    Article  MathSciNet  Google Scholar 

  13. Jin, H., Wang, Z.: Global dynamics and spatio-temporal patterns of predator–prey systems with density-dependent motion. Eur. J. Appl. Math. 32, 652–682 (2021)

    Article  MathSciNet  Google Scholar 

  14. Lee, J.M., Hillen, T., Lewis, M.A.: Continuous traveling waves for prey-taxis. Bull. Math. Biol. 70, 654–676 (2008)

    Article  MathSciNet  Google Scholar 

  15. Lee, J.M., Hillen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3, 551–573 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ainseba, B., Bendahmane, M., Noussair, A.: A reaction–diffusion system modeling predator–prey with prey-taxis. Nonlinear Anal. Real World Appl. 9, 2086–2105 (2008)

    Article  MathSciNet  Google Scholar 

  17. Tao, Y.: Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis. Nonlinear Anal. Real World Appl. 11, 2056–2064 (2010)

    Article  MathSciNet  Google Scholar 

  18. He, X., Zheng, S.: Global boundedness of solutions in a reaction–diffusion system of predator–prey model with prey-taxis. Appl. Math. Lett. 49, 73–77 (2015)

    Article  MathSciNet  Google Scholar 

  19. Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predator–prey model with prey-taxis. J. Differ. Equ. 260, 5847–5874 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jin, H., Wang, Z.: Global stability of prey-taxis systems. J. Differ. Equ. 262, 1257–1290 (2017)

    Article  MathSciNet  Google Scholar 

  21. Yousefnezhad, M., Mohammadi, S.A.: Stability of a predator–prey system with prey taxis in a general class of functional responses. Acta Math. Sci. 36, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liu, C., Guo, S.: Dynamics of a predator–prey system with nonlinear prey-taxis. Nonlinearity 35, 4283–4316 (2022)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Wang, X., Shao, Y.: Steady states of a predator–prey model with prey-taxis. Nonlinear Anal. Theory Methods Appl. 97, 155–168 (2014)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: Existence theory and qualitative analysis for a fully cross-diffusive predator–prey system. SIAM J. Math. Anal. 54, 4806–4864 (2022)

    Article  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: A fully cross-diffusive two-component evolution system: existence and qualitative analysis via entropy-consistent thin-film-type approximation. J. Funct. Anal. 281, 109069 (2021)

    Article  MathSciNet  Google Scholar 

  26. Mi, Y., Song, C., Wang, Z.: Boundedness and global stability of the predator–prey model with prey-taxis and competition. Nonlinear Anal. Real World Appl. 66, 103521 (2022)

    Article  MathSciNet  Google Scholar 

  27. Zheng, P.: Boundedness and global stability in a three-species predator–prey system with prey-taxis. Discrete Contin. Dyn. Syst. B. 28, 4780–4799 (2023)

    Article  MathSciNet  Google Scholar 

  28. Wang, K., Wang, Q., Yu, F.: Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete Contin. Dyn. Syst. 37, 505–543 (2017)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Wang, M.: Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis. Z. Angew. Math. Phys. 69, 63 (2018)

    Article  MathSciNet  Google Scholar 

  30. Qiu, S., Mu, C., Tu, X.: Dynamics for a three-species predator–prey model with density-dependent motilities. J. Dyn. Differ. Equ. 35, 709–733 (2023)

    Article  MathSciNet  Google Scholar 

  31. Zhang, D., Hu, X.: Dynamics in two-predator and one-prey models with signal-dependent motility. Z. Angew. Math. Phys. 74, 75 (2023)

    Article  MathSciNet  Google Scholar 

  32. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function Spaces, Differential Operators and Nonlinear Analysis, Springer, Berlin. 133, 9–126 (1993)

  33. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778–4806 (2019)

    Article  MathSciNet  Google Scholar 

  34. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  35. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  36. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  37. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana U. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous reviewers for the valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (No. 12261092), Yili Normal University’s “High-Level Talent” Program of Distinguished Professor of Academic Integrity (No. YSXSJS22005) and theScience Foundation in Yili Normal University (No. 2021SYSB077).

Funding

This work is supported by the National Natural Science Foundation of China (No. 12261092), Yili Normal University’s “High-Level Talent” Program of Distinguished Professor of Academic Integrity (No. YSXSJS22005) and the Science Foundation in Yili Normal University (No. 2021SYSB077).

Author information

Authors and Affiliations

Authors

Contributions

Sijun Zhao and Wenjie Zhang participated in the theoretical research and drafted the manuscript. The entire reasoning and calculation process was carefully reviewed and corrected by Hui Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zhang, W. & Wang, H. Boundedness and stability of a quasilinear three-species predator–prey model with competition mechanism. Z. Angew. Math. Phys. 75, 59 (2024). https://doi.org/10.1007/s00033-024-02197-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02197-9

Keywords

Mathematics Subject Classification

Navigation