Skip to main content
Log in

Well-posedness and large time behavior for Cahn–Hilliard–Oono equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the well-posedness and large time behavior of Cauchy problem for Cahn–Hilliard equation in \(\mathbb {R}^n\) (\(n\in \mathbb {Z}^+,~n\ge 3\)). First, based on the higher-order norm estimates of solutions and the mollifier technique, we obtain the local well-posedness of strong solutions. Then, by using pure energy method, standard continuity argument together with negative Sobolev norm estimates, one proves the global well-posedness and time decay estimates provided that the \(H^{\left[ \frac{n}{2}\right] +1}\)-norm of initial data is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin, comvex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dynam. Syst. Ser. B 18, 2211–2238 (2013)

    Google Scholar 

  2. Bahiana, M., Oono, Y.: Cell dynamical system approach to block copolymers. Phys. Rev. A 41, 6763–6771 (1990)

    Article  Google Scholar 

  3. Bosia, S., Grasselli, M., Miranville, A.: On the long-time behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures. Math. Methods Appl. Sci. 37, 726–743 (2014)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Muler, N.E.: An \(L^{\infty }\) bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133, 129–144 (1995)

    Article  MathSciNet  Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  6. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cholewa, J.W., Rodriguez-Bernal, A.: On the Cahn–Hilliard equation in \(H^1(\mathbb{R} ^N)\). J. Differ. Equ. 253, 3678–3726 (2012)

    Article  Google Scholar 

  8. Duan, N., Zhao, X.: Global well-posedness and large time behavior to fractional Cahn–Hilliard equation in \(\mathbb{R} ^N\). Forum Math. 31, 803–814 (2019)

    Article  MathSciNet  Google Scholar 

  9. Elliott, C.M., Zheng, S.M.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  Google Scholar 

  10. Farrell, P.E., Pearson, J.W.: A Preconditioner for the Ohta–Kawasaki equation. arXiv:1603.04570v1

  11. Giorgini, A., Grasselli, M., Miranville, A.: The Cahn–Hilliard–Oono equation with singular potential. Math. Models Methods Appl. Sci. 27, 2485–2510 (2017)

    Article  MathSciNet  Google Scholar 

  12. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, Prentice-Hall, Hoboken (2004)

    Google Scholar 

  13. Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  15. Li, X., Tan, Z., Xu, X.: Global existence and decay estimates of solutions to the MHD-Boussinesq system with stratification effects. Nonlinearity 35, 6067 (2022)

    Article  MathSciNet  Google Scholar 

  16. Liu, C., Wu, H.: An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal. 233, 167–247 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, S., Wang, F., Zhao, H.: Global existence and asymptotics of solutions of the Cahn–Hilliard equation. J. Differ. Equ. 238, 426–469 (2007)

    Article  MathSciNet  Google Scholar 

  18. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  19. Miranville, A.: Asymptotic behavior of the Cahn–Hilliard–Oono equation. J. Appl. Anal. Comput. 1, 523–536 (2011)

    MathSciNet  Google Scholar 

  20. Miranville, A., Temam, R.: On the Cahn–Hilliard–Oono–Navier–Stokes equations with singular potentials. Appl. Anal. 95, 2609–2624 (2016)

    Article  MathSciNet  Google Scholar 

  21. Nirenberg, L.: On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa 13, 115–162 (1959)

    MathSciNet  Google Scholar 

  22. Oono, Y., Puri, S.: Computationally efficient modeling of ordering of quenched phases. Phys. Rev. Lett. 58, 836–839 (1987)

    Article  Google Scholar 

  23. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems, II. Two-dimensional demonstractions. Phys. Rev. A 38, 1542–1573 (1988)

    Article  Google Scholar 

  24. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems, I. Modeling. Phys. Rev. A 38, 434–463 (1988)

    Article  Google Scholar 

  25. Savostianov, A., Zelik, S.: Finite dimensionality of the attractor for the hyperbolic Cahn–Hilliard–Oono equation in \(\mathbb{R} ^3\). Math. Methods Appl. Sci. 39, 1254–1267 (2016)

    Article  MathSciNet  Google Scholar 

  26. Savostianov, A., Zelik, S.: Global well-posedness and attractors for the hyperbolic Cahn–Hilliard–Oono equation in the whole space. Math. Models Methods Appl. Sci. 26, 1357–1384 (2016)

    Article  MathSciNet  Google Scholar 

  27. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Unversity Press, Princeton (1970)

    Google Scholar 

  28. Schimperna, G., Pawlow, I.: A Cahn–Hilliard equation with singular diffusion. J. Differ. Equ. 254, 779–803 (2013)

    Article  MathSciNet  Google Scholar 

  29. Tao, Q., Yao, Z.: Global existence and large time behavior for a two-dimensional chemotaxis-shallow water system. J. Differ. Equ. 265, 3092–3129 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yin, J.: On the existence of nonnegative continuous solutions of the Cahn–Hilliard equation. J. Differ. Equ. 97, 310–327 (1992)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y.: Decay of the 3D inviscid liquid-gas two-phase flow model. Z. Angew. Math. Phys. 67, 54 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zhao, X.: Global well-posedness of solutions to the Cauchy problem of convective Cahn–Hilliard equation. Ann. Mat. Pura Appl. 197(5), 1333–1348 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zhao, X.: A class of three dimensional Cahn–Hilliard equation with nonlinear diffusion. J. Differ. Equ. 361, 1–39 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for helpful comments.

Funding

This work is partially supported by the Fundamental Research Funds for the Central Universities (Grant No. N2205009).

Author information

Authors and Affiliations

Authors

Contributions

ND, JW and XZ wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaopeng Zhao.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Consent for publication

All authors approved the final manuscript and the submission to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, N., Wang, J. & Zhao, X. Well-posedness and large time behavior for Cahn–Hilliard–Oono equation. Z. Angew. Math. Phys. 74, 226 (2023). https://doi.org/10.1007/s00033-023-02119-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02119-1

Keywords

Mathematics Subject Classification

Navigation