Skip to main content
Log in

On a crime model in higher-dimensional setting: global generalized solvability and eventual smoothness

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the system

$$\begin{aligned} \left\{ \begin{aligned}&u_t= \Delta u-\chi \nabla \cdot \left( \frac{u}{v}\nabla v\right) +g(u),&\ x\in \Omega ,\ t>0, \\&v_t=\Delta v-v+ uv(1-v)+b,&\ x\in \Omega ,\ t>0, \end{aligned} \right. \end{aligned}$$
(⋆)

in a smooth bounded domain \( \Omega \subset {\mathbb {R}}^n(n\ge 2) \), where \(\chi >0\), \(b>0\), \(g(s)\in C^1[0, \infty )\) satisfies

$$\begin{aligned} g(0)\ge 0\quad \textrm{and}\quad \frac{g(s)}{s}\rightarrow -\infty \quad \textrm{as}\quad s\rightarrow \infty . \end{aligned}$$

The first result demonstrates that for all properly regular initial data, the associated homogeneous Neumann initial boundary value problem admits global solutions within some generalized framework. Meanwhile, it reveals that when \(n=2\) and \(g(u)=-u^\alpha \) with \(\alpha >1\), such generalized solutions eventually become smooth and converge to the homogeneous steady state (0, b) with respect to the norm in \((L^\infty (\Omega ))^2\) at least at algebraic rate as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahn, J., Kang, K., Lee, J.: Global well-posedness of logarithmic Keller–Segel type systems. J. Differ. Equ. 287, 185–211 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Aida, M., Osaka, K., Tsujikawa, T., Mimura, M.: Chemotaxis and growth system with sigular sensitivity function. Nonliear Anal. Real World Appl. 6, 323–336 (2005)

    MATH  Google Scholar 

  3. Berestycki, H., Wei, J., Winter, M.: Existence of symmetric and asymmetric spikes for a crime hotspot modeland asymmetric spikes for a crime hotspot model. SIAM J. Math. Anal. 46, 691–719 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bian, S., Liu, J.: Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent \(m>0\). Comm. Math. Phys. 323(3), 1017–1070 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Cantrell, R., Cosner, C., Manásevich, R.: Global bifurcation of solutions for crime modeling equations. SIAM J. Appl. Math. 44, 1340–1358 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35(5), 1891–1904 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Freitag, M.: Global solutions to a higher-dimensional system related to crime modeling. Math. Meth. Appl. Sci. 41(16), 6326–6335 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Henry, D.: Geometric theory of semilinear parabolic equations. Springer (2006)

    Google Scholar 

  10. Heihoff, F.: Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term. Z. Angew. Math. Phys. 71(3), 23 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Jiang, Y., Yang, L.: Global solvability and stabilization in a three-dimensional cross-diffusion system modeling urban crime propagation. Acta Appl. Math. 178, 40 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Kolokolnikiv, T., Ward, M., Wei, J.: The stability of hot-spot patterns for reaction-diffusion models of urban crime. Discrete Contin. Dyn. Syst. Ser. B 19, 1373–1410 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Ladyzhenskaya, O., Ural’tseva, N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, (1968)

  14. Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., (1968)

  15. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data. NoDEA Nonlinear Differ. Equ. Appl. 24(4), 33 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Li, H., Zhao, K.: Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J. Differ. Equ. 258, 302–308 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Li, B., Xie, L.: Global large-data generalized solutions to a two-dimensional chemotaxis system stemming from crime modelling. Discrete Contin. Dyn. Syst. Ser. B (2022). https://doi.org/10.3934/dcdsb.2022167

    Article  MATH  Google Scholar 

  18. Li, B., Xie, L.: Generalized solution and eventual smoothness in a logarithmic Keller–Segel system for criminal activities. Math. Models Methods Appl. Sci. 33(6), 1281–1330 (2023)

    MathSciNet  MATH  Google Scholar 

  19. Li, B., Wang, Z., Xie, L.: Regularization effect of the mixed-type damping in a higherdimensional logarithmic Keller–Segel system related to crime modeling. Math. Biosci. Eng. 24(3), 4532–4559 (2023)

    Google Scholar 

  20. Manásevich, R., Phan, Q., Souplet, P.: Global existence of solutions for a chemotaxis-type system arising in crime modelling. Eur. J. Appl. Math. 24(2), 273–296 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Pitcher, A.: Adding police to a mathematical model of burglary. Eur. J. Appl. Math. 21, 401–419 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Rodríguez, N., Bertozzi, A.: Local existence and uniqueness of solutions to a PDE model for criminal behavior. Math. Models Methods Appl. Sci. 20(supp01), 1425–1457 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Rodríguez, N.: On the global well-posedness theory for a class of PDE models for criminal activity. Phys. D Nonlinear Phenom. 260(3), 191–200 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Rodríguez, N., Winkler, M.: On the global existence and qualitative behaviour of one-dimensional solutions to a model for urban crime. Eur. J. Appl. Math. 33, 919–959 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Rodríguez, N., Wang, Q., Zhang, L.: Understanding the effects of on-and off-hotspot policing: evidence of hotspot, oscillating, and chaotic activities. SIAM J. Appl. Dyn. Syst. 20, 1882–1916 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Rodríguez, N., Winkler, M.: Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation. Math. Models Methods Appl. Sci. 30, 2105–2137 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146(1), 65–96 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Shen, J., Li, B.: Mathematical analysis of a continuous version of statistical models for criminal behavior. Math. Meth. Appl. Sci. 43(1), 409–426 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Short, M., D’orsogna, M., Pasour, V., et al.: A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18, 1249–1267 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Short, M., D’orsogna, M., Brantingham, P., et al.: Measuring and modeling repeat and near-repeat burglary effects. J. Quan. Criminol. 25, 325–339 (2009)

    Google Scholar 

  31. Tao, Y., Wang, L., Wang, Z.: Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete Contin. Dyn. Syst. Ser. B 18, 821–845 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Tao, Y., Winkler, M.: Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime. Commun. Math. Sci. 19(3), 829–849 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Tse, W., Ward, M.: Hotspot formation and dynamics for a continuum model of urban crime. Eur. J. Appl. Math. 27, 583–624 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Tse, W., Ward, M.: Asynchronous instabilities of crime hotspots for a 1-D reaction-diffusion model of urban crime with focused police patrol. SIAM J. Appl. Dyn. Syst. 17, 2018–2075 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Wilson, J., Kelling, G.: Broken windows. Atlantic Month. 249, 29–38 (1982)

    Google Scholar 

  36. Wang, D., Feng, Y.: Global well-posedness and uniform boundedness of a higher dimensional crime model with a logistic source term. Math. Meth. Appl. Sci. 45(8), 4727–4740 (2022)

    MathSciNet  Google Scholar 

  37. Wang, Q., Wang, D., Feng, Y.: Global well-posedness and uniform boundedness of urban crime models: one-dimensional case. J. Differ. Equ. 269, 6216–6235 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    MATH  Google Scholar 

  39. Winkler, M.: The two-dimensional Keller–Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties. Math. Models Methods Appl. Sci. 26, 987–1024 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Unlimited growth in logarithmic Keller–Segel systems. J. Differ. Equ. 309, 74–97 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Meth. Appl. Sci. 34(2), 176–190 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller–Segel system. Nonlinear Anal. 170, 123–141 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 36, 1747–1790 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: The two-dimensional Keller–Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties. Math. Models Methods Appl. Sci. 26, 987–1024 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: \(L^1\) solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (2023). https://doi.org/10.2422/2036-2145.202005_016

  47. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/with-out growth source. J. Differ. Equ. 19, 4275–4323 (2015)

    MATH  Google Scholar 

  48. Zhao, X., Zheng, S.: Global existence and boundedness of solutions to a chemotaxis system with sigular sensitivity and logistic-type source. J. Differ. Equ. 267(2), 826–865 (2019)

    MATH  Google Scholar 

  49. Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with sigular sensitivity and logistic source. Z. Angew. Math. Phys. 68(1), 1–13 (2017)

    MathSciNet  Google Scholar 

  50. Zhang, W.: Global generalized solvability in the Keller–Segel system with singular sensitivity and arbitrary super-linear degradation. Discrete Contin. Dyn. Syst. Ser. B 28(2), 1267–1278 (2023)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Li Xie acknowledges support of the Chongqing Science and Technology Commission Project (Nos: CSTB2023NSCQ-MSX0411, csts2020jcyj-jqX0022), and of the Science Technology Research Program of Chongqing Municipal Education Commission (Nos: KJZD-M202000502, CXQT21014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xie.

Ethics declarations

Conflict of interest

There is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xiao, Y. & Xie, L. On a crime model in higher-dimensional setting: global generalized solvability and eventual smoothness. Z. Angew. Math. Phys. 74, 160 (2023). https://doi.org/10.1007/s00033-023-02051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02051-4

Keywords

Mathematics Subject Classification

Navigation