Skip to main content
Log in

Optimal decay estimates for the Vlasov–Poisson system with radiation damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a Vlasov–Poisson system in the presence of radiation damping, which is a two-species Vlasov–Poisson system for electrons and ions with additional terms to describe the effect of accelerated charged particles. We obtain the global-in-time and optimal decay estimates of classical solutions to it for small initial data in the whole space \(\mathbb {R}^3\). Compared to the previous results, no compact support assumptions on initial data is needed in our paper. And we obtain the optimal \(L^{\infty }_x\) decay estimates of the charge densities and the electrostatic field, which was not reported in previous literature. For the proofs of our results, we adapt the modified vector field method which was introduced initially by Smulevici for the classical Vlasov–Poisson system for electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arsen’ev, A.A.: Existence in the large of a weak solution to the Vlasov system of equations. Ž. Vyčisl. Mat i Mat. Fiz. 15, 136–147 (1975)

  2. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, S.: A non-relativistic model of plasma physics containing a radiation reaction term. Kinet. Relat. Models 11(1), 25–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, S.: A post-Newtonian expansion including radiation damping for a collisionless plasma. J. Nonlinear Sci. 30(1), 487–536 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bigorgne, L.: Sharp asymptotic behavior of solutions of the 3D Vlasov–Maxwell system with small data. Commun. Math. Phys. 376(2), 893–992 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigorgne, L.: A vector field method for massless relativistic transport equations and applications. J. Funct. Anal. 278(4), 108365, 44 pp (2020)

  7. Bouchut, F.: Global weak solution of the Vlasov–Poisson system for small electrons mass. Commun. Partial Differ. Equ. 16(8–9), 1337–1365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.-L., Chen, J., Zhang, X.-W.: Global solutions of the Vlasov–Poisson system with a radiation damping term for general initial data. SIAM J. Math. Anal. 54(1), 693–722 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Zhang, X.-W.: Global existence of small amplitude solutions to the Vlasov–Poisson system with radiation damping. Int. J. Math. 26(12), 19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J., Zhang, X.-W., Gao, R.: Existence, uniqueness and asymptotic behavior for the Vlasov–Poisson system with radiation damping. Acta Math. Sin. (Engl. Ser.) 33(5), 635–656 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duan, X.-L.: Sharp decay estimates for the Vlasov–Poisson and Vlasov–Yukawa systems with small data. Kinet. Relat. Models 15(1), 119–146 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fajman, D., Joudioux, J., Smulevici, J.: A vector field method for relativistic transport equations with applications. Anal. PDE 10(7), 1539–1612 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fajman, D., Joudioux, J., Smulevici, J.: Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions. arXiv:1704.05353

  14. Griffin-Pickering, M., Iacobelli, M.: Global well-posedness for the Vlasov–Poisson system with massless electrons in the 3-dimensional torus. Commun. Partial Differ. Equ. 46(8), 49 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Griffin-Pickering, M., Iacobelli, M.: Global strong solutions in \(\mathbb{R} ^3\) for ionic Vlasov–Poisson systems. Kinet. Relat. Models 14(4), 571–597 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Griffin-Pickering, M., Iacobelli, M.: Recent developments on the well-posedness theory for Vlasov-type equations. Springer Proc. Math. Stat. 352, 301–319 (2021)

  17. Guo, Y.: Regularity for the Vlasov equations in a half-space. Indiana Univ. Math. J. 43(1), 255–320 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Han-Kwan, D., Iacobelli, M.: The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric. Commun. Math. Sci. 15(2), 481–509 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hwang, H.-J., Rendall, A.-D., Velázquez, J.-J.-L.: Optimal gradient estimates and asymptotic behaviour for the Vlasov–Poisson system with small initial data. Arch. Ration. Mech. Anal. 200(1), 313–360 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hwang, H.-J., Jung, J., Velázquez, J.-J.-L.: On global existence of classical solutions for the Vlasov–Poisson system in convex bounded domains. Discrete Contin. Dyn. Syst. 33(2), 723–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hwang, H.-J., Velázquez, J.-J.-L.: Global existence for the Vlasov–Poisson system in bounded domains. Arch. Ration. Mech. Anal. 195(3), 763–796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hwang, H.-J., Velázquez, J.-J.-L.: On global existence for the Vlasov–Poisson system in a half space. J. Differ. Equ. 247(6), 1915–1948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunze, M., Rendall, A.-D.: The Vlasov–Poisson system with radiation damping. Ann. Henri Poincaré 2(5), 857–886 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kunze, M., Rendall, A.-D.: Simplified models of electromagnetic and gravitational radiation damping. Class. Quantum Gravity 18(17), 3573–3587 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105(2), 415–430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luk, J.: Stability of vacuum for the Landau equation with moderately soft potentials. Ann. PDE 5(1), Paper No. 11, 101 pp (2019)

  28. Ma, Y.-X., Zhang, X.-W.: On global classical solutions of the Vlasov–Poisson system with radiation damping. Z. Angew. Math. Phys. 70(6), Paper no. 164, 18 pp (2019)

  29. Ma, Y.-X., Zhang, X.-W.: Asymptotic growth bounds for the Vlasov–Poisson system with radiation damping. Acta Math. Sci. Ser. B (Engl. Ed.) 42(1), 91–104 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281–303 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schaeffer, J.: Global existence for the Poisson–Vlasov system with nearly symmetric data. J. Differ. Equ. 69(1), 111–148 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schaeffer, J.: Asymptotic growth bounds for the Vlasov–Poisson system. Math. Methods Appl. Sci. 34(3), 262–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schaeffer, J.: An improved small data theorem for the Vlasov–Poisson system. Commun. Math. Sci. 19, 721–736 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smulevici, J.: Small data solutions of the Vlasov–Poisson system and the vector field method. Ann. PDE 2(2), Art.11, 55 pp (2016)

  36. Ukai, S., Okabe, T.: On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka Math. J. 15(2), 245–261 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Wang, Y.-C.: Decay estimates of solutions to the \(N\)-species Vlasov–Poisson system with small initial data. Math. Methods Appl. Sci. 44(17), 13099–13115 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wollman, S.: Global-in-time solutions to the three-dimensional Vlasov–Poisson system. J. Math. Anal. Appl. 176(1), 76–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wong, W.W.-Y.: A commuting-vector-field approach to some dispersive estimates. Arch. Math. 110(3), 273–289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, M.: Sharp decay estimates for the Vlasov–Poisson system with an external magnetic field. Nonlinear Anal. 215, Paper No. 112651, 23 pp (2022)

  41. Xiao, M.-X., Zhang, X.-W.: On global solutions to the Vlasov–Poisson system with radiation damping. Kinet. Relat. Models 11(5), 1183–1209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiao, M.-X., Zhang, X.-W.: Classical solutions for the Vlasov–Poisson system with damping term. Appl. Anal. 98(5), 867–891 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiao, M.-X., Zhang, X.-W.: Moment propagation of the Vlasov–Poisson system with a radiation term. Acta Appl. Math. 160, 185–206 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their constructive comments and helpful suggestions which improved the earlier version of this paper. F. Li and M. Wu are supported by NSFC (Grant No. 12071212). And F. Li is also supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. B. Sun is supported by NSFC (Grant No. 12171415) and the Scientific Research Foundation of Yantai University (Grant No. 2219008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Local Existence of solutions

Appendix A. Local Existence of solutions

In this appendix, we give a complete proof of local existence of solutions to the problem (1.2)–(1.3), namely, the bootstrap assumptions introduced in (3.1)–(3.4) were justified in detail. Here we use some ideas introduced in [19]. For any multi-index \(\alpha \), we define the following function spaces:

$$\begin{aligned} A_{\alpha } (T_0)&= \big \{ \rho \in {L^{\infty }(\mathbb {R}_{+} \times \mathbb {R}^3)}: \Vert \rho \Vert _{ A_{\alpha }(T_0)}< \infty \big \}, \\ B_{\alpha } (T_0)&= \big \{ \phi \in {L^{\infty }(\mathbb {R}_{+} \times \mathbb {R}^3)}: \Vert \phi \Vert _{ B_{\alpha }(T_0)} < \infty \big \}, \end{aligned}$$

where

$$\begin{aligned} \Vert \rho (F) \Vert _{A_{\alpha } (T_0)}&= \sup _{0 \le t \le T_0} \big \{ \big \Vert \rho (Z^{\alpha }F) \big \Vert _{L^1_x} + (1+t)^3 \Vert \rho (Z^{\alpha }F)\Vert _{L^{\infty }_x} \big \}, \\ \Vert \phi \Vert _{B_{\alpha } (T_0)}&= \sup _{0 \le t \le T_0} \big \{ (1+t)^2 \big \Vert \nabla X^{\alpha }(\phi ) \big \Vert _{L^{\infty }_x} \big \}. \end{aligned}$$

Notice that

The following is the standard regularity result for the Poisson equation, which will be used in later proofs.

Lemma A.1

Let \(\phi \) solves the Poisson equation \(\Delta _x \phi (t,x) = 4 \pi \rho (F)(t,x)\) and suppose that \(\Vert \rho (F) \Vert _{A_{\alpha }} < \infty \) for some \(\alpha \). Then

$$\begin{aligned} \Vert \phi \Vert _{B_{\alpha }} \le C \Vert \rho \Vert _{A_{\alpha }}, \end{aligned}$$

for some \(C > 0\) independent of \(\rho \).

Proof

For any fixed \(t >0\), we define

$$\begin{aligned} {\tilde{\rho }} (t,x) = (1+t)^3 \rho \big ( t, (1+t)x \big ). \end{aligned}$$

It’s clearly that

$$\begin{aligned} \int \limits _{\mathbb {R}^3} \big | {\tilde{\rho }}(Z^{\alpha }F) (t,x) \big | \textrm{d}x&= \int \limits _{\mathbb {R}^3} (1+t)^3 \big | \rho (Z^{\alpha }F) \big ( t,(1+t)x \big ) \big | \textrm{d}x = \int \limits _{\mathbb {R}^3} \big | \rho (Z^{\alpha }F)(t,x) \big | \textrm{d}x. \\ \big \Vert {\tilde{\rho }}(Z^{\alpha }F) (t, \cdot ) \big \Vert _{L^{\infty }_x}&= (1+t)^3 \big \Vert \rho (Z^{\alpha }F) (t, \cdot ) \big \Vert _{L^{\infty }_x}. \end{aligned}$$

Then, we have

$$\begin{aligned} \sum _{| \alpha |}\big \Vert {\tilde{\rho }}(Z^{\alpha }F) \big \Vert _{L^1_x} + \big \Vert {\tilde{\rho }} (Z^{\alpha }F)(t,\cdot ) \big \Vert _{L^{\infty }_x} \le \Vert \rho \Vert _{A_{\alpha }}. \end{aligned}$$
(A.1)

Define \({\tilde{\phi }}(t,x):= (1+t) \phi \big ( t,(1+t)x \big )\). Notice that

$$\begin{aligned} \Delta _x {\tilde{\phi }} = {\tilde{\rho }}. \end{aligned}$$

By Lemma 2.3, we know that

$$\begin{aligned} \Delta X^{\alpha }({\tilde{\phi }}) = \sum _{|\alpha '| \le |\alpha |} C_{\alpha '}^{\alpha } {\tilde{\rho }}(Z^{\alpha '}F). \end{aligned}$$
(A.2)

Using the Caldeŕon-Zygmund inequality to the equation (A.2), we get

$$\begin{aligned} \big \Vert \nabla ^2 X^{\alpha } {\tilde{\phi }} \big \Vert _{L^{p}_x} \le C \sum _{|\alpha '| \le |\alpha |} \big \Vert {\tilde{\rho }}(Z^{\alpha '}F) \Vert _{L^{p}_x}, \ \ \ 1< p < \infty . \end{aligned}$$
(A.3)

Combining the Sobolev embedding theorem and the inequality (A.3), then, we have

$$\begin{aligned} \big \Vert \nabla X^{\alpha } ({\tilde{\phi }}) \big \Vert _{L^{\infty }(\mathbb {R}^3)}&\le C \big \Vert \nabla X^{\alpha }({\tilde{\phi }}) \big \Vert _{W^{1,p}(\mathbb {R}^3)} \le C \big \Vert \nabla ^2 X^{\alpha }({\tilde{\phi }}) \big \Vert _{L^p(\mathbb {R}^3)\cap L^q (\mathbb {R}^3)} \nonumber \\&\le C \sum _{|\alpha '| \le |\alpha |} \big \Vert {\tilde{\rho }}(Z^{\alpha '}F) \big \Vert _{L^p(\mathbb {R}^3)\cap L^q (\mathbb {R}^3)} . \end{aligned}$$
(A.4)

Here \(3<p < +\infty \) and q is the Sobolev conjugate of p, namely, \(q=\frac{3p}{p+3}\). A standard interpolation argument yields

$$\begin{aligned} \big \Vert {\tilde{\rho }} (Z^{\alpha '}F) \big \Vert _{L^{p_1} (\mathbb {R}^3)} \le C \big \Vert {\tilde{\rho }} (Z^{\alpha '}F) \big \Vert _{L^1 (\mathbb {R}^3) }^{\frac{1}{p_1}} \big \Vert {\tilde{\rho }} (Z^{\alpha '}F) \big \Vert _{L^\infty (\mathbb {R}^3)}^{\frac{p_1 - 1}{p_1}}, \ \ \ 1 \le p_1 \le \infty . \end{aligned}$$
(A.5)

Using the Cauchy inequality and plugging the inequalities (A.1) and (A.5) into (A.4), we obtain

$$\begin{aligned} \sum _{|\alpha |}\big \Vert \nabla X^{\alpha } ({\tilde{\phi }}) \big \Vert _{L^{\infty }(\mathbb {R}^3)} \le C \sum _{|\alpha |} \big ( \big \Vert {\tilde{\rho }} (Z^{\alpha '}F) \big \Vert _{L^1 (\mathbb {R}^3)} + \big \Vert {\tilde{\rho }} (Z^{\alpha '}F) \big \Vert _{L^\infty (\mathbb {R}^3)} \big ) \le C \Vert \rho \Vert _{A_{\alpha }}. \end{aligned}$$

Similarly to Lemma 2.2, by induction, it’s easy to prove that

$$\begin{aligned}{}[\partial _{x_i}, X^{\alpha }] = \sum _{j=1}^3 \sum _{|\beta | \le |\alpha |-1} C_{\beta ,j}^{\alpha ,i} X^{\beta } \partial _{x_j}. \end{aligned}$$
(A.6)

Here the constants \(C_{\beta ,j}^{\alpha ,i} \ge 0\). Thanks to the definition of \({\tilde{\phi }}\) and the equality (A.6), it follows that

$$\begin{aligned} \nabla X^{\alpha } ({\tilde{\phi }})&= \sum _{|\alpha '| \le |\alpha |} C_{\alpha '}^{\alpha } X^{\alpha '} (1+t)^2 \nabla \phi \\&= C_{\alpha '}^{\alpha } \sum _{|\alpha '| \le |\alpha |} (1+t)^2 X^{\alpha '} \nabla \phi + C_{\alpha '}^{\alpha } \sum _{1 \le |\beta | \le |\alpha |} X^{\beta }[(1+t)^2] X^{\alpha '-\beta } \nabla \phi \\&= C \sum _{|\alpha ''| \le |\alpha |} (1+t)^2 \nabla X^{\alpha ''}(\phi ) + C_{\alpha '}^{\alpha } \sum _{1 \le |\beta | \le |\alpha |} X^{\beta }[(1+t)^2] X^{\alpha '-\beta } \nabla \phi . \end{aligned}$$

In conclusion, it holds

$$\begin{aligned} \Vert \phi \Vert _{B_{\alpha }} \le C \Vert \rho \Vert _{A_{\alpha }}. \end{aligned}$$

\(\square \)

Then we begin to state the local existence theorem.

Theorem A.1

Suppose that the initial data \(\big ( f_0^{+},f_0^{-} \big )\) satisfy the following assumptions:

$$\begin{aligned} \sum _{m=0}^1 \bigg | \frac{\partial (Z^{\alpha } f_0^{\pm })}{\partial _x^m \partial _v^{1-m}} \bigg | \le \frac{C}{(1+|v|)^K}, \end{aligned}$$

for some \(\alpha \) with \(|\alpha | >0\)\(K > 3\) and \(C > 0\). Then, there exists a small constant \(T_0 > 0\) and the solution \(\big ( f^{+}(t,x,v),f^{-}(t,x,v) \big )\) of the problem (1.2)–(1.3) with

$$\begin{aligned} \Vert \rho \Vert _{A_{\alpha }(T_0)}< \infty , \ \Vert \phi \Vert _{B_{\alpha }(T_0)} < \infty , \end{aligned}$$

for \(0 \le t \le T_0\).

Proof

According to Lemma A.1, it follows that \(\Vert \rho \Vert _{A_{\alpha }(T_0)} < \infty \) implies \(\Vert \phi \Vert _{B_{\alpha }(T_0)} < \infty \). Thus, we only need to prove the first argument. First, the characteristic system of equation (1.2) read

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\textrm{d}}{\textrm{d}s} X^{\pm } (s) = V^{\pm }(s) \pm \sigma D^{[2]}(s), \quad \frac{\textrm{d}}{\textrm{d}s} V^{\pm } (s) = \pm \nabla _x \phi (s,X^{\pm }(s)), \\&X^{\pm } (t,t;x,v) = x^{\pm }, \quad V^{\pm } (t,t;x,v) = v^{\pm }, \\&X^{\pm } (0,t;x,v) = x_0^{\pm }, \quad V^{\pm } (0,t;x,v) = v_0^{\pm }. \end{aligned} \right. \end{aligned}$$
(A.7)

We define \(f^{\pm } (t,x,v) = f_0^{\pm } \big ( X(0,t;x,v),V(0,t;x,v) \big )\), and then we can compute a new \({\tilde{\rho }}\) by

$$\begin{aligned} {\tilde{\rho }} (t,x) = \int \limits _{\mathbb {R}^3} f^{\pm }(t,x,v) \textrm{d}v = \int \limits _{\mathbb {R}^3} f_0^{\pm } \big ( X(0,t;x,v),V(0,t;x,v) \big ) \textrm{d}v. \end{aligned}$$

Our task is to check that the transformation \((\rho \rightarrow {\tilde{\rho }})\) is contractive in the Banach space \(A_{\alpha }(T_0)\). Suppose that we give \(\rho _1^{\pm }, \rho _2^{\pm } \in A_{\alpha }(T_0)\), then \(\rho _1, \rho _2 \in A_{\alpha }(T_0)\). By Lemma A.1, we get \(\phi _1, \phi _2 \in B_{\alpha }(T_0)\) and \(\Vert \phi _1 - \phi _2 \Vert _{B_{\alpha }(T_0)} \le \Vert \rho _1 - \rho _2 \Vert _{A_{\alpha }(T_0)}\). Applying Lagrange mean value theorem and the characteristic system (A.7), we have

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}s} \big ( \big \Vert X_1^{\pm } - X_2^{\pm } \big \Vert _{L^{\infty }} + \big \Vert V_1^{\pm } - V_2^{\pm } \big \Vert _{L^{\infty }} \big ) \le&\, C \Vert \nabla _x (\phi _1 - \phi _2) \Vert _{L^{\infty }} (1 + \Vert \rho _1^{+} + \rho _1^{-} \Vert _{L^1}) \\&+ C \Vert \nabla _x \phi _2 \Vert _{L^{\infty }} \Vert \rho _1^{+} + \rho _1^{-} - \rho _2^{+} - \rho _2^{-} \Vert _{L^1} \\&+ C \Vert \nabla _x^2 \phi _1 \Vert _{L^{\infty }} \big ( \big \Vert X_1^{\pm } - X_2^{\pm } \big \Vert _{L^{\infty }} + \big \Vert V_1^{\pm } - V_2^{\pm } \big \Vert _{L^{\infty }} \big ). \end{aligned}$$

In any case, Gronwall’s inequality implies that

$$\begin{aligned} \Vert x_{0,1}^{\pm } - x_{0,2}^{\pm } \Vert _{L^{\infty }} + \Vert v_{0,1}^{\pm } - v_{0,2}^{\pm } \Vert _{L^{\infty }} \le C T_0 \Vert \rho _1 - \rho _2 \Vert _{A_{\alpha } (T_0)} + C T_0 \Vert \rho _1^{+} + \rho _1^{-} - \rho _2^{+} - \rho _2^{-} \Vert _{A_{\alpha }(T_0)}, \end{aligned}$$
(A.8)

where \(x_{0,i}^{\pm } = X_i^{\pm }(0,t;x,v),\ v_{0,i}^{\pm } = V_i^{\pm }(0,t;x,v), \ i=1,2\) and \(CT_0 < 1\) is small if \(T_0\) is small. Using the formula of \({\tilde{\rho }}\), the assumption of \(f_0^{\pm }\), as well as the inequality (A.8), we have

$$\begin{aligned} \Vert \tilde{\rho _1} - \tilde{\rho _2} \Vert _{A_{\alpha }(T_0)} + \Vert {\tilde{\rho }}_1^{+} + {\tilde{\rho }}_1^{-} - {\tilde{\rho }}_2^{+} - {\tilde{\rho }}_2^{-} \Vert _{A_{\alpha }(T_0)} \le CT_0 \Vert \rho _1 - \rho _2 \Vert _{A_{\alpha } (T_0)} + C T_0 \Vert \rho _1^{+} + \rho _1^{-} - \rho _2^{+} - \rho _2^{-} \Vert _{A_{\alpha }(T_0)}. \end{aligned}$$

A fixed point argument yields the desired result. \(\square \)

Remark A.1

Notice that the results of Theorem A.1 still holds for the case \(|\alpha |=0\). In fact, the results of Theorem A.1 with \(|\alpha |=0\) is a special case of [19, Theorem 2]. Compared with [19], despite our problem (2.1) has the extra radiation damping term, the arguments on the local existence results of [19] are still valid with slightly modifications.

Due to the results of Theorem A.1, it follows that the bootstrap assumptions (3.1)–(3.4) will be verified in the next Theorem.

Theorem A.2

Suppose that the hypotheses of Theorem 1.1 are satisfied, then, there is a constant \(T_0 > 0\) such that, for \(0 \le t \le T_0\), the following statements hold:

1. For any multi-index \(|\alpha | \le N\), we have

$$\begin{aligned} E_{N}[f^k](t):= \sum _{|\alpha | \le N} \Vert Y^{\alpha }(f^k) \Vert _{L^1_{x,v}} \le C_N. \end{aligned}$$
(A.9)

2. For any multi-index \(|\alpha | \le N\), we have

$$\begin{aligned} |\nabla X^{\alpha }(\phi )| \le \frac{C}{(1+t)^2}. \end{aligned}$$
(A.10)

3. For any multi-index \(\alpha \) with \(|\alpha | \le N-1\), we have

$$\begin{aligned} |Y^{\alpha } \varphi (t,x,v)| \le C_N (1 + \ln (1+t)). \end{aligned}$$
(A.11)

4. For any multi-index \(\alpha \) with \(|\alpha | \le N-2\) and for any \(1 \le i \le 3\), we have

$$\begin{aligned} |Y^{\alpha } (\partial _{x_i} \varphi )(t,x,v)| \le C_N. \end{aligned}$$
(A.12)

Here \(C_N\) is a generic constant that depend only on N.

Proof

Due to the results of Theorem A.1, it’s obviously that the estimate (A.10) is holds. The rest of estimates can be proved by induction. Let’s take the estimate (A.11) as an example. Using the equality (2.6) and the estimate (A.10), we get

$$\begin{aligned} |\varphi | \le \int \limits _0^t |{\tilde{T}} (\varphi )| \textrm{d}s \le C \int \limits _0^t s \frac{1}{(1+s)^2} \textrm{d}s \le C (1 + \ln (1+t)). \end{aligned}$$

Clearly, (A.11) is true for \(|\alpha | =0\). Assuming that the estimate (A.11) holds for some multi-index \(|\alpha -1| \ge 0\), we want to establish the validity of the estimate of the form \(|Y^{\alpha }(\varphi )|\). By the method of characteristics, we obtain

$$\begin{aligned} |Y^{\alpha }(\varphi )| \le \int \limits _0^t \big | {\tilde{T}} \big ( Y^{\alpha }(\varphi ) \big ) \big | \textrm{d}s. \end{aligned}$$

Thanks to Lemmas 2.22.5 and 2.8, it follows that

$$\begin{aligned} {\tilde{T}} \big ( Y^{\alpha }(\varphi ) \big ) =&\big [ {\tilde{T}},Y^{\alpha } \big ] (\varphi ) + Y^{\alpha } {\tilde{T}}(\varphi ) \\ =&\sum _{d=0}^{|\alpha | + 1} \, \sum _{i=1}^3 \, \sum _{\begin{array}{c} |\lambda | \le |\alpha | \\ |\xi | \le |\alpha | \end{array}} P_{d \lambda \xi }^{\alpha , k, i}(\varphi ) \partial _{x_i} X^{\lambda } (\phi ) Y^{\xi }(\varphi ) + \sum _{i=1}^3 \, \sum _{\begin{array}{c} |\lambda '| \le |\alpha | \\ |\xi '| \le |\alpha | \end{array}} C_{k \sigma } W^{\lambda '} D_i^{[2]}(t) Y^{\xi '}(\varphi ) \\&+ t \sum _{|\eta | \le |\alpha | + 1} \sum _{i=1}^3 C \partial _{x_i} X^{\eta }(\varphi ) + \sum _{d=1}^{|\alpha |} \sum _{|\eta '| \le |\alpha | +1} \sum _{i=1}^3 P_{d \eta '}^{\alpha ,i}(\varphi ) \partial _{x_i} X^{\eta '}(\varphi ) \\&:= IV_1 + IV_2 + IV_3 + IV_4, \end{aligned}$$

where \(P_{d \lambda \xi }^{\alpha , k, i}(\varphi )\) have signatures less than \(k'\) such that \(k' \le |\alpha |-1\) and \(k' + |\lambda | + |\xi | \le |\alpha | +1\) and the multi-indices \(\lambda '\) and \(\xi '\) satisfy \(|\lambda '| + |\xi '| \le |\alpha | +1\). And \(P_{d \eta '}^{\alpha ,i}(\varphi )\) have signatures less than \({\bar{k}}\) satisfying \({\bar{k}} \le |\alpha |\) and \({\bar{k}} + |\eta '| \le |\alpha +1|\).

First, we consider the simpler terms \(IV_1\) and \(IV_3\). Since \(k' \le |\alpha |-1 \le N-2 < N, \, |\lambda | \le |\alpha | \le N-1\) and \(|\eta | \le |\alpha |+1 \le N\), it follows from the induction hypothesis and the inequality (A.10) that

$$\begin{aligned}&| IV_1 | \le C_N \big ( 1+\ln (1+t) \big )^{N+1} \frac{1}{(1+t)^2} | Y^{\alpha }(\varphi )| \le C_N \frac{1}{(1+t)^{3/2}} | Y^{\alpha }(\varphi )|. \\&| IV_3 | \le C \frac{t}{(1+t)^2} \le C \frac{1}{1+t}. \end{aligned}$$

For the term \(IV_2\), taking a similar process of (3.13), we find that

$$\begin{aligned} W^{\lambda '} D_i^{[2]}(t) \le C \sum _{\begin{array}{c} |\lambda '_1|, |\lambda '_2| \le |\lambda '| \\ |\lambda '_1| + |\lambda '_2| = |\lambda '| \end{array}} \sum _{\begin{array}{c} |n'_1| \le |n_1| \\ |n''_1| \le |n'_1| \end{array}} \int \limits _{\mathbb {R}^3} \partial _{x_i} X^{\lambda '_1 + n''_1}(\phi ) \rho (Z^{\lambda '_2 - n_1}f^k) \textrm{d}x. \end{aligned}$$

From the induction hypothesis and Theorem A.1, we have

$$\begin{aligned} | IV_2 | \le C_N \frac{1}{(1+t)^2} \big ( 1+\ln (1+t) \big ) | Y^{\alpha }(\varphi )| \le C_N \frac{1}{(1+t)^{3/2}} | Y^{\alpha }(\varphi )|. \end{aligned}$$

Finally, we deal with the term \(IV_4\). Since \({\bar{k}} \le |\alpha |\), by contradiction, we know that there is at most one term \(Y^{\theta _j}(\varphi )\) with \(|\theta _j| = |\alpha |\) in the decomposition of \(P_{d \eta }^{\alpha ,i}(\varphi )\). Then, we have

$$\begin{aligned} |IV_4| \le C_N \big ( 1+\ln (1+t) \big )^{N-2} | Y^{\alpha }(\varphi )| \frac{1}{(1+t)^2} \le C_N \frac{1}{(1+t)^{3/2}} | Y^{\alpha }(\varphi )|. \end{aligned}$$

Therefore, we can summarize what we have proved as the following:

$$\begin{aligned} |Y^{\alpha }(\varphi )| \le C \int \limits _0^t \frac{1}{1+s} \textrm{d}s + \int \limits _0^t C_N \frac{1}{(1+s)^{3/2}} | Y^{\alpha }(\varphi )(s)| \textrm{d}s. \end{aligned}$$

An application of Gronwall’s inequality to \(|Y^{\alpha }(\varphi )|\) gives \(|Y^{\alpha }(\varphi )| \le C_N \big ( 1+\ln (1+t) \big )\). Similarly, the estimates (A.9) and (A.12) can be proved by induction for which we omit the process. \(\square \)

Remark A.2

Notice that there is a difference between the indices of the bootstrap assumptions (3.2)–(3.4) and (A.10)–(A.12). In fact, in order to use Proposition 3.1, we re-index it in the bootstrap assumption (3.2). And then we make corresponding changes in the bootstrap assumptions (3.3)–(3.4).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Sun, B. & Wu, M. Optimal decay estimates for the Vlasov–Poisson system with radiation damping. Z. Angew. Math. Phys. 74, 152 (2023). https://doi.org/10.1007/s00033-023-02044-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02044-3

Keywords

Mathematics Subject Classification

Navigation