Skip to main content
Log in

Well-posedness and exponential stability of a coupled fluid–thermoelastic plate interaction model with second sound

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate a coupled system modeled by fluid and thermoelastic plate, while the heat effects are modeled by the Cattaneo’s law giving rise to a “second sound” effect. We proved that the coupled system admits a unique global mild solution. Furthermore, we construct the second-order energy to control the term \( \Vert \nabla \theta \Vert _{L^2(\Gamma _0)} \) so as to establish the exponential decay of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Apalara, T.A., Messaoudi, S.A.: An exponential stability result of a Timoshenko system with thermoelasticity with second sound and in the presence of delay. Appl. Math. Optim. 71(3), 449–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avalos, G., Bucci, F.: Rational rates of uniform decay for strong solutions to a fluid–structure PDE system. J. Differ. Equ. 258, 4398–4423 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos, G., Clark, T.J.: A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evol. Equ. Control Theory 3, 557–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avalos, G., Dvorak, M.: A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method. Appl. Math. (Warsaw) 35, 259–280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation. SIAM J. Math. Anal. 29, 155–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties. In: Fluids and Waves, pp. 15–54. Contemp. Math., 440, Amer. Math. Soc., Providence, RI (2007)

  7. Avalos, G., Triggiani, R.: Fluid-structure interaction with and without internal dissipation of the structure: a contrast study in stability. Evol. Equ. Control Theory 2, 563–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boulakia, M., Guerrero, S., Takahashi, T.: Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure. Nonlinearity 32(10), 3548–3592 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulanouar, F., Drabla, S.: General boundary stabilization result of memory-type thermoelasticity with second sound. Electron. J. Differ. Equ. 2014(202), 18 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1949)

    MathSciNet  MATH  Google Scholar 

  11. Chueshov, I., Ryzhkova, I.: A global attractor for a fluid-plate interaction model. Commun. Pure Appl. Anal. 12, 1635–1656 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coutand, D., Shkoller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176(1), 25–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drid, H., Djebabla, A., Tatar, N.: Well-posedness and exponential stability for the von Karman systems with second sound. Eurasian J. Math. Comput. Appl. 7(4), 52–65 (2019)

    Google Scholar 

  14. Fernández Sare, H.D., Muñoz Rivera, J.E.: Optimal rates of decay in 2-d thermoelasticity with second sound. J. Math. Phys. 53(073509), 13 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194(1), 221–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haraux, A.: Decay rate of the range component of solutions to some semilinear evolution equations. NoDEA Nonlinear Differ. Equ. Appl. 13, 435–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: Small data global existence for a fluid–structure model. Nonlinearity 30(2), 848–898 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lagnese, J.E.: Boundary stabilization of thin plates. SIAM Studies in Applied Mathematics, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

  19. Lasiecka, I., Lu, Y.: Interface feedback control stabilization of a nonlinear fluid-structure interaction. Nonlinear Anal. 75, 1449–1460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I., Seidman, T.I.: Strong stability of elastic control systems with dissipative saturating feedback. Systems Control Lett. 48(3–4), 243–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. I. Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge (2000)

  22. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Vol. I. Translated from the French by P. Kenneth. Springer, New York (1972)

  23. Liu, W., Chen, M.: Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback. Contin. Mech. Thermodyn. 29(3), 731–746 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W., Wang, D., Chen, D.: General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound. J. Therm. Stresses 41(6), 758–775 (2018)

    Article  Google Scholar 

  25. Lu, Y.: Global uniform stabilization to nontrivial equilibrium of a nonlinear fluid viscoelastic-structure interaction. Appl. Anal. 97(10), 1797–1813 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Messaoudi, S.A., Madani, B.: A general decay result for a memory-type thermoelasticity with second sound. Appl. Anal. 93, 1663–1673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Muha, B., Canić, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muha, B., Čanić, S.: Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. 256(2), 658–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muha, B., Čanić, S.: Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy. Interfaces Free Bound. 17(4), 465–495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muha, B., Čanić, S.: Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 260(12), 8550–8589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Muñoz Rivera, J.E., Racke, R., Sepúlveda, M., Villagrán, O.: On exponential stability for the thermoelastic plate: comparion and singular limits. Appl. Math. Optim. (2020) (in press). https://doi.org/10.1007/s00245-020-09670-7

  32. Peralta, G.: Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evol. Equ. Control Theory 9(1), 39–60 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qin, Y., Guo, Y., Yao, P.-F.: Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete Contin. Dyn. Syst. 40(3), 1555–1593 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qin, Y., Yao, P.-F.: Energy decay and global solutions for a damped free boundary fluid-elastic structure interface model with variable coefficients in elasticity. Appl. Anal. 99(11), 1953–1971 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Santos, M.L., Almeida J\(\acute{\rm u}\)nior, D.S., Muñoz Rivera, J.E.: The stability number of the Timoshenko system with second sound. J. Differ. Equ., 253, 2715 (2012)

  36. Rissel, M., Wang, Y.-G.: Remarks on exponential stability for a coupled system of elasticity and thermoelasticity with second sound. J. Evol. Equ. 21(2), 1573–1599 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, L., Wang, S., Feng, Y.: Existence of global weak solutions for the high frequency and small displacement oscillation fluid-structure interaction systems. Math. Methods Appl. Sci. 44(5), 3249–3259 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Temam, R.: Navier–Stokes Equations, Revised Edition, Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  39. Trifunović, S., Wang, Y.-G.: Existence of a weak solution to the fluid–structure interaction problem in 3D. J. Differ. Equ. 268(4), 1495–1531 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Trifunović, S., Wang, Y.-G.: Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D. Acta Math. Sci. Ser. B (Engl. Ed.) 41(1), 19–38 (2021)

  41. Triggiani, R.: Linear parabolic-hyperbolic fluid structure interaction models. The case of static interface, in Mathematical theory of evolutionary fluid-flow structure interactions, pp. 53–171. Oberwolfach Semin., 48, Birkhäuser/Springer, Cham (2018)

  42. Tucsnak, M., Weiss, G.: Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12271261), the Key Research and Development Program of Jiangsu Province (Social Development) (No. BE2019725) and the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

J. J. and W. L. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Liu, W. Well-posedness and exponential stability of a coupled fluid–thermoelastic plate interaction model with second sound. Z. Angew. Math. Phys. 74, 132 (2023). https://doi.org/10.1007/s00033-023-02025-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02025-6

Keywords

Mathematics Subject Classification

Navigation