Skip to main content
Log in

Neuronal cable equations derived from the hydrodynamic motion of charged particles

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Neuronal cable theory is usually derived from an electric analogue of the membrane, which contrasts with the slow movement of ions in aqueous media. We show here that it is possible to derive neuronal cable equations from a different perspective, based on the laws of hydrodynamic motion of charged particles (Navier–Stokes equations). This results in similar cable equations, but with additional contributions arising from nonlinear interactions inherent to fluid dynamics, and which may shape the integrative properties of the neurons. The model recovers the classic cable equations as a particular case, when the fluid is assumed to be linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bédard, C., Destexhe, A.: Generalized cable theory for neurons in complex and heterogeneous media. Phys. Rev. E 88, 022709 (2013)

    Article  Google Scholar 

  2. Cremer, J.: Zum kernleiterproblem. Z. Biol. 37, 550–553 (1899)

    Google Scholar 

  3. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambdridge (2005)

    MATH  Google Scholar 

  4. Destexhe, A., Bedard, C.: Do neurons generate monopolar current sources? J. Neurophysiol. 108, 953–955 (2012)

    Article  Google Scholar 

  5. Forcella, D., Prada, C., Carminati, R.: Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118(13), 134301 (2017)

    Article  Google Scholar 

  6. Forster, D.D.: Hydrodynamic Fluctuations, Broken Symmetries and Correlation Functions. Benjamin-Cummings, Reading (1975)

    Google Scholar 

  7. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)

    Article  Google Scholar 

  8. Gomes, J.M., Bédard, C., Valtcheva, S., Nelson, M., Khokhlova, V., Pouget, P., Venance, L., Bal, T., Destexhe, A.: Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons. Biophys. J. 110, 234–246 (2016)

    Article  Google Scholar 

  9. Hartnoll, S.A., Kovtun, P.K., Muller, M., Sachdev, S.: Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007)

    Article  Google Scholar 

  10. Hermann, L.: Beiträge zur physiologie und physik des nerven. Arch Gesamte Physiol Menschen Tiere 109(3), 95–144 (1905)

    Article  Google Scholar 

  11. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates Inc, Sunderland (2001)

    Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–544 (1952)

    Article  Google Scholar 

  13. Kadanoff, L.P., Martin, P.C.: Hydrodynamic equations and correlation functions. Ann. Phys. 24, 419 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koch, C.: Biophysics of Computation. Oxford University Press, Oxford (1999)

    Google Scholar 

  15. Landau, L.D., Lifschitz, E.M.: Fluid Mechanics, 3rd edn. Pergamon Press, Oxford (1966)

    Google Scholar 

  16. Philip, M., Bolton, W.: Technology of Engineering Materials. Elsevier, New York (2002)

    Google Scholar 

  17. Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962)

    Article  Google Scholar 

  18. Rall, W.: The Theoretical Foundations of Dendritic Function. MIT Press, Cambridge (1995)

    Google Scholar 

  19. Riera, J.J., Ogawa, T., Goto, T., Sumiyoshi, A., Nonaka, H., Evans, A., Miyakawa, H., Kawashima, R.: Pitfalls in the dipolar model for the neocortical EEG sources. J. Neurophysiol. 108, 956–975 (2012)

    Article  Google Scholar 

  20. Tuckwell, H.C.: Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambdridge (1988)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Claude Bedard for useful discussions. Research funded by the CNRS, the European Community (H2020-720270, H2020-785907), the ANR (PARADOX) and the ICODE excellence network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forcella, D., Romagnoni, A. & Destexhe, A. Neuronal cable equations derived from the hydrodynamic motion of charged particles. Z. Angew. Math. Phys. 74, 89 (2023). https://doi.org/10.1007/s00033-023-01986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01986-y

Mathematics Subject Classification

Navigation