Skip to main content
Log in

The influence of an external magnetic field on cold plasma oscillations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

For a system of equations describing one-dimensional nonlinear oscillations in a magnetoactive plasma, we study the effect of a constant magnetic field on the breaking of oscillations. For the nonrelativistic case, a criterion for the formation of a finite-dimensional singularity is obtained in terms of the initial data. It is shown that the enhancement of the magnetic field basically leads to an expansion of the class of initial data providing the global smoothness of the solution. The nature of the singularities of the solutions is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhiezer, A.I., Lyubarski, G.V.: Toward a nonlinear theory of plasma oscillations. Dokl. Akad. Nauk. S.S.S.R. 80, 193–195 (1951)

    Google Scholar 

  2. Akhiezer, A.I., Polovin, R.V.: Theory of wave motion of an electron plasma, soviet physics. JETP 3(5), 696–705 (1956)

    MathSciNet  MATH  Google Scholar 

  3. Alexandrov, A.F., Bogdankevich, L.S., Rukhadze, A.A.: Principles of Plasma Electrodynamics. Springer Series in Electronics and Photonics. Springer, Berlin (1984)

    Book  Google Scholar 

  4. Bernstein, I.B.: Waves in a plasma in a magnetic field. Phys. Rev. 109(1), 10–21 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chizhonkov, E.V.: Mathematical aspects of modelling oscillations and wake waves in plasma. CRC Press, Boca Raton (2019)

    Book  MATH  Google Scholar 

  6. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  7. Chizhonkov, E., Delova, M., Rozanova, O.: High precision methods for solving a system of cold plasma equations taking into account electron–ion collisions. Russ. J. Numer. Anal. Math. Model. 36(3), 139–155 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davidson, R.C., Schram, P.P.: Nonlinear oscillations in a cold plasma. Nucl. Fusion 8, 183 (1968)

    Article  Google Scholar 

  9. Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic Press, New York (1972)

    Google Scholar 

  10. Dawson, J.M.: Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113(2), 383–387 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delova, M.I., Rozanova, O.S.: The interplay of regularizing factors in the model of upper hybrid oscillations of cold plasma. J. Math. Anal. Appl. 515(2), 126449 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  Google Scholar 

  13. Frolov, A.A., Chizhonkov, E.V.: Numerical simulation of a slow extraordinary wave in magnetoactive plasma. Vychisl. Metody Programm. 21, 420439 (2020). (in Russian)

    Google Scholar 

  14. Ginzburg, V.L.: Propagation of Electromagnetic Waves in Plasma. Pergamon, New York (1970)

    Google Scholar 

  15. Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software, pp. 100–114. Prentice-Hall, Hoboken (1989)

    MATH  Google Scholar 

  16. Karmakar, M., Maity, Ch., Chakrabarti, N.: Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma. Phys. Plasmas 23, 064503 (2016)

    Article  Google Scholar 

  17. Liu, H., Tadmor, E.: Rotation prevents finite-time breakdown. Physica D Nonlinear Phenom. 188, 262–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maity, C., Chakrabarti, N., Sengupta, S.: Breaking of upper hybrid oscillations in the presence of an inhomogeneous magnetic field. Phys. Rev. E 86, 016408 (2012)

    Article  Google Scholar 

  19. Maity, C.: Lagrangian fluid technique to study nonlinear plasma dynamics. Ph.D thesis, Saha Institute of Nuclear Physics, Kolkata, India (2013)

  20. Maity, C., Sarkar, A., Shukla, P.K., Chakrabarti, N.: Wave-breaking phenomena in a relativistic magnetized plasma. Phys. Rev. Lett. 110, 215002 (2013)

    Article  Google Scholar 

  21. Rozanova, O.S., Chizhonkov, E.V.: On the existence of a global solution of a hyperbolic problem. Dokl. Math. 101(3), 254–256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rozanova, O., Chizhonkov, E., Delova, M.: Exact thresholds in the dynamics of cold plasma with electron–ion collisions. AIP Conf. Proc. 2302(1), 060012 (2020)

    Article  Google Scholar 

  23. Rozanova, O.S., Chizhonkov, E.V.: On the conditions for the breaking of oscillations in a cold plasma. Z. Angew. Math. Phys. 72, 13 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rozanova, O.S., Uspenskaya, O.V.: On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane. Mosc. Univ. Math. Bull. 76(1), 1–8 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rozanova, O.S.: Study of small perturbations of a stationary state in a model of upper hybrid plasma oscillations. Theor. Math. Phys. 211, 712–723 (2022)

    Article  MathSciNet  Google Scholar 

  26. Rozhdestvenskii, B.L., Yanenko, N.N.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics. American Mathematical Society, Providence (1983)

    Book  Google Scholar 

  27. Schultz, M.H.: Spline Analysis, pp. 24–39. Prentice-Hall, New York (1973)

    Google Scholar 

  28. Sheppard, C.J.R.: Cylindrical lenses—focusing and imaging: a review [invited]. Appl. Opt. 52(4), 538–545 (2013)

    Article  MathSciNet  Google Scholar 

  29. Zeldovich, Ya.B., Myshkis, A.D.: Elements of Mathematical Physics. Nauka, Moscow (1973) (in Russian)

Download references

Acknowledgements

Supported by the Moscow Center for Fundamental and Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga S. Rozanova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanova, O.S., Chizhonkov, E.V. The influence of an external magnetic field on cold plasma oscillations. Z. Angew. Math. Phys. 73, 249 (2022). https://doi.org/10.1007/s00033-022-01885-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01885-8

Keywords

Mathematics Subject Classification

Navigation