Skip to main content
Log in

Domain of influence results of dual-phase-lag thermoelasticity theory for natural stress–heat-flux problem

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The present paper deals with the natural stress–heat-flux problem in the context of dual-phase-lag thermoelasticity theory for an isotropic and homogeneous material with the initial and boundary conditions in terms of stress and heat-flux. The main aim of this work is to establish the domain of influence theorem for the considered problem. Using this theorem, a bounded domain, \({\mathfrak {D}}_{t}\) is obtained such that outside this domain, no thermoelastic disturbance due to heat-flux and stress field is observed. The finite speed of propagation is shown to be dependent on material parameters and phase-lags. Results related to domain of influence in Lord–Shulman and classical thermoelasticity theory are also acquired from the present theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tzou, D.Y.: A unified field approach for heat conduction from macro to micro scales. J. Heat Transfer (ASME) 117, 8–16 (1995)

    Article  Google Scholar 

  2. Tzou, D.Y.: Macro-To Micro-Scale Heat Transfer: The Lagging Behavior. Taylor & Francis, Abingdon (1997)

    Google Scholar 

  3. Horgan, C.O., Quintanilla, R.: Spatial behaviour of solutions of the dual-phase-lag heat equation. Math. Methods Appl. Sci. 28(1), 43–57 (2005)

    Article  MathSciNet  Google Scholar 

  4. Quintanilla, R., Jordan, P.M.: A note on the two temperature theory with dual-phase-lag delay: some exact solutions. Mech. Res. Commun. 36(7), 796–803 (2009)

    Article  MathSciNet  Google Scholar 

  5. Quintanilla, R.: Some solutions for a family of exact phase-lag heat conduction problems. Mech. Res. Commun. 38(5), 355–60 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  7. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  8. Quintanilla, R.: Exponential stability in the dual-phase-lag heat conduction theory. J. Non-Equilib. Thermodyn. 27(3), 217–27 (2002)

    Article  Google Scholar 

  9. Quintanilla, R.: A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J. Therm. Stress. 26(7), 713–21 (2003)

    Article  MathSciNet  Google Scholar 

  10. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. S. Lond. A 463, 659–674 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J. Appl. Math. 66, 977–1001 (2006)

    Article  MathSciNet  Google Scholar 

  12. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72(2), 175–201 (1979)

    Article  MathSciNet  Google Scholar 

  13. Ignaczak, J.: Domain of influence theorem in linear thermoelasticity. Int. J. Eng. Sci. 16, 139–145 (1978)

    Article  MathSciNet  Google Scholar 

  14. Chandrasekharaiah, D.S.: An uniqueness theorem in the theory of elastic materials with voids. J. Elasticity 18, 173–179 (1987)

    Article  MathSciNet  Google Scholar 

  15. Ignaczak, J., Bialy, J.: Domain of influence in thermoelasticity with one relaxation time. J. Therm. Stress. 3(3), 391–9 (1980)

    Article  Google Scholar 

  16. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  17. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  18. Ignaczak, J.: Domain of influence result in generalized thermoelasticity-A survey. Appl. Mech. Rev. 44, 375–382 (1991)

    Article  MathSciNet  Google Scholar 

  19. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds, pp. 51–85. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  20. Marin, M.: On the domain of influence in thermoelasticity of bodies with voids. Arch. Math. 33(3), 301–308 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Marin, M.: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. Real World Appl. 11(5), 3446–52 (2010)

    Article  MathSciNet  Google Scholar 

  22. Cimmelli, V.A., Rogolino, P.: A domain of influence theorem in linear thermo-elasticity with thermal relaxation and internal variable. Arch. Mech. 54(1), 15–33 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Carbonaro, B., Ignaczak, J.: Some theorems in temperature-rate-dependent thermoelasticity for unbounded domains. J. Therm. Stress. 10(3), 193–220 (1987)

    Article  MathSciNet  Google Scholar 

  24. Quintanilla, R., Racke, R.: Spatial behavior in phase-lag heat conduction. Differ. Integral Equ. 28, 291–308 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Chirita, S., Ciarletta, M., Tibullo, V.: Qualitative properties of solutions in the time differential dual phase-lag model of heat conduction. Appl. Math. Model. 50, 380–393 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mukhopadhyay, S., Kothari, S., Kumar, R.: A domain of influence theorem for thermoelasticity with dual phase-lags. J. Therm. Stress. 34(9), 923–33 (2011)

    Article  Google Scholar 

  27. Kumari, B., Mukhopadhyay, S.: A domain of influence theorem for thermoelasticity without energy dissipation. Math. Mech. Solids 22(11), 2156–64 (2017)

    Article  MathSciNet  Google Scholar 

  28. Jangid, K., Mukhopadhyay, S.: A domain of influence theorem under MGT thermoelasticity theory. Math. Mech. Solids 26(2), 285–295 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jangid, K., Mukhopadhyay, S.: A domain of influence theorem for a natural stress-heat-flux problem in the Moore-Gibson-Thompson thermoelasticity theory. Acta Mech. 232(1), 177–187 (2020)

    Article  MathSciNet  Google Scholar 

  30. Marin, M., Othman, M.I., Seadawy, A.R., Carstea, C.: A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 14(1), 653–60 (2020)

    Article  Google Scholar 

  31. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the constructive suggestions by reviewer and editor to improve the quality of the present paper. One of the authors (Komal Jangid) thankfully acknowledges the full financial assistance from the Council of Scientific and Industrial Research (CSIR), India, as the JRF fellowship (File. No. 09/1217(0057)/2019-EMR-I) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manushi Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Jangid, K. & Mukhopadhyay, S. Domain of influence results of dual-phase-lag thermoelasticity theory for natural stress–heat-flux problem. Z. Angew. Math. Phys. 73, 169 (2022). https://doi.org/10.1007/s00033-022-01805-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01805-w

Keywords

Mathematics Subject Classification

Navigation