Skip to main content
Log in

On the Klein–Gordon equation with randomized oscillating coefficients on the sphere

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Klein–Gordon equation is a relativistic wave equation describing the propagation of free spinless particles in the quantum field theory. In this paper, we mainly address the Klein–Gordon equation on the curved sphere manifold with probabilistic propagation mechanism. By the application of micro-local analysis and stochastic analysis, we make a classification of multiple time-dependent oscillating coefficients on the principal harmonic oscillator and investigate the corresponding regularity behavior and \(L^2\)-estimates of the solution. Furthermore, in order to demonstrate the weak optimality of the exponential type growth rate of the \(L^2\)-estimates, typical counter-examples with periodic coefficients will be constructed to show a lower bound of exponential type growth by the application of instability arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: A remark on normal forms and the I-method for periodic NLS. J. Anal. Math. 94, 125–157 (2004)

    Article  MathSciNet  Google Scholar 

  2. Colombini, F., Lerner, N.: Hyperbolic operators with non-Lipschitz coefficients. Duke Math. J. 77, 657–698 (1995)

    Article  MathSciNet  Google Scholar 

  3. Colombini, F., Del Santo, D., Reissig, M.: On the optimal regularity of coefficients in hyperbolic Cauchy problems. Bull. Sc. Math. 127(4), 328–347 (2003)

    Article  MathSciNet  Google Scholar 

  4. Cicognani, M., Hirosawa, F., Reissig, M.: The log-effect for p-evolution type models. J. Math. Soc. Jpn. (2008). https://doi.org/10.2969/jmsj/06030819

    Article  MATH  Google Scholar 

  5. Demtröder, W.: Atoms, Molecules and Photons, An Introduction to Atomic-, Molecular- and Quantum Physics, 3rd edn. Springer, Berlin (2018)

    Book  Google Scholar 

  6. do Nascimento, W.N., Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. Math. Nathr. 290, 1779–1805 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Gasiorowicz, S.: Quantum Physics, 3rd edn. Wiley, Minnesota (2003)

    MATH  Google Scholar 

  8. He, D., Witt, I., Yin, H.: On semilinear Tricomi equations with critical exponents or in two space dimensions. J. Differ. Equ. 263, 8102–8137 (2017)

    Article  MathSciNet  Google Scholar 

  9. Hirosawa, F.: On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients. Math. Nach. 256, 29–47 (2003)

    Article  MathSciNet  Google Scholar 

  10. Hirosawa, F., Reissig, M.: Levi condition for hyperbolic equations with oscillating coefficients. J. Differ. Equ. 223, 329–350 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hirosawa, F.: Loss of regularity for the solutions to hyperbolic equations with non-regular coefficients, an application to Kirchhoff equation. MMAS 26(9), 783–799 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Lu, X.: On the fractional order hyperbolic equation with random coefficients. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1959555

    Article  Google Scholar 

  13. Lu, X.: On the plate equation with nonstationary stochastic process coefficients. Z. Angew. Math. Mech. (2021). https://doi.org/10.1002/zamm.202000205

    Article  Google Scholar 

  14. Lu, X.: On the optimal regularity of plate equations with randomized time-dependent coefficients. Z. Angew. Math. Mech. 98(7), 1224–1236 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lu, X.: On Hyperbolic/Parabolic -Evolution Equations, Doctoral Thesis, China (2010)

  16. Lu, X., Reissig, M.: Instability Behavior and Loss of Regularity, Advances in Phase Space Analysis of Partial Differential Equations, pp. 171–200. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  17. Lu, X., Reissig, M.: Does the loss of regularity really appear? Math. Methods Appl. Sci. 32, 1183–1324 (2009)

    Article  MathSciNet  Google Scholar 

  18. Mezadek, A.K., Reissig, M.: Semi-linear fractional -evolution equations with mass or power non-linearity. Nonlinear Differ. Equ. Appl. 42, 1–43 (2018)

    MATH  Google Scholar 

  19. Øksendal, B.: Stochastic Differential Equations, An Introduction with Applications, 6th edn. Springer, New York (2005)

    MATH  Google Scholar 

  20. Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. Math. Nathr. 291, 1859–1892 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Peskin, M., Schroeder, D.: An Introduction to Quantum Field Theory. Westview Press, Boulder (1995)

    Google Scholar 

  22. Reissig, M., Smith, J.: \(L^p-L^q\) estimates for wave equation with bounded time dependent coefficient. Hokkaido Math. J. 34, 541–586 (2005)

    Article  MathSciNet  Google Scholar 

  23. Reissig, M., Yagdjian, K.: \(L^p-L^q\) decay estimates for hyperbolic equations with oscillations in coefficients. Chin. Ann. Math. 21(B), 153–164 (2000)

    Article  Google Scholar 

  24. Reissig, M., Yagdjian, K.: About the influence of oscillations on Strichartz-type decay estimates. Rendiconti Del Seminario Matematico Torino 58, 375–388 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum Press, New York (1980)

    MATH  Google Scholar 

  26. Michael, E.: Taylor, Pseudodifferential Operators. Princeton University Press, Princeton (1981)

    Google Scholar 

  27. Michael, E.: Taylor, Qualitative Studies of Linear Equations. Partial Differential Equations II. Springer, New York (1999)

    Google Scholar 

  28. Wu, Y., Lu, X.: Regularity of hyperbolic magnetic Schrödinger equation with oscillating coefficients. J. Differ. Equ. 263, 1966–1985 (2017)

    Article  Google Scholar 

  29. Xu, Q.: Stochastic Processes with Its Applications. Higher Education Press, Beijing (2015)

    Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for their instructive comments. This project is supported by Natural Science Foundation of Jiangsu Province (BK 20191257). This project is also supported by Natural Science Foundation of China (NSFC 7213018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X. On the Klein–Gordon equation with randomized oscillating coefficients on the sphere. Z. Angew. Math. Phys. 73, 154 (2022). https://doi.org/10.1007/s00033-022-01782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01782-0

Keywords

Mathematics Subject Classification

Navigation