Skip to main content
Log in

General decay and blow up of solutions for the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a viscoelastic Kirchhoff plate equation with dynamic boundary conditions, delay and source terms acting on the boundary. Under suitable assumptions on the functions M, \(\sigma \) and g, first, we obtain global existence of solution by using the potential well method and introducing suitable energy and Lyapunov functionals to establish general decay result. Finally, we prove the finite time blow-up result of solutions with negative initial energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for the second order evaluation equation with memory. J. Funct. Anal. 245, 1342–1372 (2008)

    Article  MATH  Google Scholar 

  2. Andrade, D., Jorge Silva, M.A., Ma, T.F.: Exponential stability for a plate equation with p-Laplacian and memory terms. Math. Methods Appl. Sci. 35, 417–426 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, K.T., Kuttler, K.L., Shillor, M.: Second order evolution equations with dynamic boundary conditions. J. Math. Anal. Appl. 197(3), 781–795 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreto, R., Lapa, E.C., Munõz Rivera, J.E.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boumaza, N., Gheraibia, B.: On the existence of a local solution for an integrodi-differential equation with an integral boundary condition. Bol. Soc. Mat. Mex. 26, 521–534 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boumaza, N., Gheraibia, B.: General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term. J. Math. Anal. Appl. 489(2), 124185 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Budak, B.M., Samarskii, A.A., Tikhonov, A.N.: A collection of problems on mathematical physics. Translated by A.R.M. Robson, The Macmillan Co., New York (1964)

  8. Conrad, F., Morgul, O.: On the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 36(6), 1962–1986 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, Q.Y., Yang, Z.F.: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 65(5), 885–903 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J. Control Optim. 26(3), 697–713 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, B.: Global well-posedness and stability for a viscoelastic plate equation with a time delay. Math. Probl. Eng. 2015, Article ID 585021 (2015)

  12. Feng, B.: Well-posedness and exponential stability for a plate equation with time-varying delay and past history. Z. Angew. Math. Phys. 68, 6 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferhat, M., Hakem, A.: Global existence and energy decay result for a weak viscoelastic wave equations with a dynamic boundary and nonlinear delay term. Comput. Math. Appl. 71, 779–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferhat, M., Hakem, A.: Asymptotic behavior for a weak viscoelastic wave equations with a dynamic boundary and time varying delay term. J. Appl. Math. Comput. 51, 509–526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graber, P.J., Said-Houari, B.: Existence and asymptotic behavior of the wave equation with dynamic boundary conditions. Appl. Math. Optim. 66, 81–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerbi, S., Said-Houari, B.: Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions. Adv. Differ. Equ. 13, 1051–1074 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Gerbi, S., Said-Houari, B.: Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions. Nonlinear Anal. 74, 7137–7150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerbi, S., Said-Houari, B.: Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term. Appl. Math. Comput. 218, 11900–11910 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Gerbi, S., Said-Houari, B.: Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions. Adv. Nonlinear Anal. 2, 163–193 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Gheraibia, B., Boumaza, N.: General decay result of solutions for viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term. Z. Angew. Math. Phys. 71, 198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grobbelaar-VanDalsen, M.: On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions. Appl. Anal. 53(1–2), 41–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grobbelaar-Van Dalsen, M.: On the initial-boundary-value problem for the extensible beam with attached load. Math. Methods Appl. Sci. 19(12), 943–957 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jorge Silva, M.A., Munõz Rivera, J.E., Racke, R.: On a classes of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates. Appl. Math. Optim. 73, 165–194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kafini, M., Messaoudi, S.A.: A blow-up result in a nonlinear wave equation with delay. Mediterr. J. Math. 13(1), 237–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kafini, M., Messaoudi, S.A., Nicaise, S.: A blow-up result in a nonlinear abstract evolution system with delay. Nonlinear Differ. Equ. Appl. 23(2), 13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kang, J.-R.: Global nonexistence of solutions for viscoelastic wave equation with delay. Math. Methods Appl. Sci. 41(16), 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  29. Lagnese, J., Lions, J.-L.: Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées, vol. 6. Masson, Paris (1988)

    MATH  Google Scholar 

  30. Lagnese, J.E.: Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)

    Book  Google Scholar 

  31. Liu, G.W., Zhang, H.W.: Well-posedness for a class of wave equation with past history and a delay. Z. Angew. Math. Phys. 67(1), 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  32. Liu, W., Zhu, B., Li, G., Wang, D.: General decay for a viscoelastic Kirchhoff equation with Balakrishnan–Taylor damping, dynamic boundary conditions and a time-varying delay term. Evol. Equ. Control Theory 6, 239–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mahdi, F.Z., Ferhat, M., Hakem, A.: Blow up and asymptotic behavior for a system of viscoelastic wave equations of Kirchhoff type with a delay term. Adv. Theory Nonlinear Anal. Appl. 2, 146–167 (2018)

    MATH  Google Scholar 

  34. Matsuyama, T., Ikehata, R.: On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms. J. Math. Anal. Appl. 204(3), 729–753 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Messaoudi, S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Munõz Rivera, J., Lapa, E., Barreto, R.: Decay rates for viscoelastic plates with memory. J. Elast. 44, 61–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nicaise, S., Valein, J., Fridman, E.: Stabilization of the heat and the wave equations with boundary time-varying delays. DCDS-S 2(3), 559–581 (2009)

    Article  MATH  Google Scholar 

  39. Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependence delay. Electron. J. Differ. Equ. 41, 1–20 (2011)

    MATH  Google Scholar 

  40. Nicaise, S., Pignotti, C., Valein, J.: Exponential stability of the wave equation with boundary time-varying delay. DCDS-S 4(3), 693–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ono, K.: Global existence, decay and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 137(2), 273–301 (1997)

    Article  MATH  Google Scholar 

  42. Park, S.H.: Decay rate estimates for a weak viscoelastic beam equation with time-varying delay. Appl. Math. Lett. 31, 46–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Taniguchi, T.: Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms. J. Math. Anal. Appl. 361(2), 566–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Woinowsky-Krieger, S.: The effect of axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, S.T., Tsai, L.Y.: On global existence and blow-up of solutions for an integro-diferential equation with strong damping. Taiwan. J. Math. 10(4), 979–1014 (2006)

    MATH  Google Scholar 

  46. Wu, S.T.: Blow-up of solution for a viscoelastic wave equation with delay. Acta Math. Sci. 39, 329–338 (2019)

    Article  MathSciNet  Google Scholar 

  47. Yang, Z.: Existence and energy decay of solutions for the Euler–Bernoulli viscoelastic equation with a delay. Z. Angew. Math. Phys. 66, 727–745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Z., Gong, Z.: Blow-up of solutions for viscoelastic equations of Kirchhoff type with arbitrary positive initial energy. Electron. J. Differ. Equ. 332, 1–8 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Yang, X.-G., Araujo, R.O., Teles, R.S.: Exponential stability of a mildly dissipative viscoelastic plate equation with variable density. Math. Methods Appl. Sci. 42, 733–741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zeng, R., Mu, C.L., Zhou, S.M.: A blow-up result for Kirchhoff-type equations with high energy. Math. Methods Appl. Sci. 34(4), 479–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Directorate-General for Scientific Research and Technological Development, Algeria (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouri Boumaza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamache, H., Boumaza, N. & Gheraibia, B. General decay and blow up of solutions for the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms. Z. Angew. Math. Phys. 73, 76 (2022). https://doi.org/10.1007/s00033-022-01700-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01700-4

Keywords

Keywords

Mathematics Subject Classification

Navigation