Skip to main content
Log in

On the stability of Bresse system with one discontinuous local internal Kelvin–Voigt damping on the axial force

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate the stabilization of a linear Bresse system with one discontinuous local internal viscoelastic damping of Kelvin–Voigt type acting on the axial force, under fully Dirichlet boundary conditions. First, using a general criteria of Arendt–Batty, we prove the strong stability of our system. Finally, using a frequency domain approach combined with the multiplier method, we prove that the energy of our system decays polynomially with different rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdallah, F., Ghader, M., Wehbe, A.: Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions. Math. Methods Appl. Sci. 41(5), 1876–1907 (2018)

    Article  MathSciNet  Google Scholar 

  2. Afilal, M., Guesmia, A., Soufyane, A., Zahri, M.: On the exponential and polynomial stability for a linear Bresse system. Math. Methods Appl. Sci. 43(5), 2626–2645 (2020)

    Article  MathSciNet  Google Scholar 

  3. Akil, M., Badawi, H., Wehbe, A.: Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay. arXiv e-prints, page arXiv:2007.08316, (July 2020)

  4. Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptot. Anal. 119(221–280), 3–4 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Alabau Boussouira, F., Muñoz Rivera, J.E., da Almeida Júnior, D.S.: Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374(2), 481–498 (2011)

    Article  MathSciNet  Google Scholar 

  6. Alves, M., Rivera, J.M., Sepúlveda, M., Villagrán, O.V.: The lack of exponential stability in certain transmission problems with localized Kelvin–Voigt dissipation. SIAM J. Appl. Math. 74(2), 345–365 (2014)

    Article  MathSciNet  Google Scholar 

  7. Alves, M., Rivera, J.M., Sepúlveda, M., Villagrán, O.V., Garay, M.Z.: The asymptotic behavior of the linear transmission problem in viscoelasticity. Math. Nachr. 287(5–6), 483–497 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(2), 837–852 (1988)

    Article  MathSciNet  Google Scholar 

  9. Bassam, M., Mercier, D., Nicaise, S., Wehbe, A.: Polynomial stability of the Timoshenko system by one boundary damping. J. Math. Anal. Appl. 425(2), 1177–1203 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bassam, M., Mercier, D., Nicaise, S., Wehbe, A.: Stability results of some distributed systems involving mindlin-Timoshenko plates in the plane. ZAMM J. Appl. Math. Mech. 96(8), 916–938 (2016)

    Article  MathSciNet  Google Scholar 

  11. Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8(4), 765–780 (2008)

    Article  MathSciNet  Google Scholar 

  12. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  13. de Lima, P.R., Fernández Sare, H.D.: Stability of thermoelastic Bresse systems. Z. Angew. Math. Phys. 70(1), 3 (2018)

    Article  MathSciNet  Google Scholar 

  14. El Arwadi, T., Youssef, W.: On the stabilization of the Bresse beam with Kelvin–Voigt damping. Appl. Math. Optimi. (2019)

  15. Fatori, L.H., de Oliveira Alves, M., Sare, H.D.F.: Stability conditions to Bresse systems with indefinite memory dissipation. Appl. Anal. 99(6), 1066–1084 (2020)

    Article  MathSciNet  Google Scholar 

  16. Fatori, L.H., Monteiro, R.N.: The optimal decay rate for a weak dissipative Bresse system. Appl. Math. Lett. 25(3), 600–604 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fatori, L.H., Muñoz Rivera, J.E.: Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75(6), 881–904 (2010)

    Article  MathSciNet  Google Scholar 

  18. Gerbi, S., Kassem, C., Wehbe, A.: Stabilization of non-smooth transmission problem involving Bresse systems. arXiv e-prints, page arXiv:2006.16595, (June 2020)

  19. Ghader, M., Nasser, R., Wehbe, A.: Optimal polynomial stability of a string with locally distributed Kelvin–Voigt damping and nonsmooth coefficient at the interface. Math. Methods Appl. Sci. 44, 2096–2110 (2021)

  20. Ghader, M., Nasser, R., Wehbe, A.: Stability results for an elastic -viscoelastic wave equation with localized Kelvin–Voigt damping and with an internal or boundary time delay. pp. 1–57 (2020)

  21. Ghader, M., Wehbe, A.: A transmission problem for the Timoshenko system with one local Kelvin–Voigt damping and non-smooth coefficient at the interface. arXiv e-prints, page arXiv:2005.12756, (May 2020)

  22. Guesmia, A.: Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements. Mediterr. J. Math. 14(2), 49 (2017)

    Article  MathSciNet  Google Scholar 

  23. Guesmia, A., Kafini, M.: Bresse system with infinite memories. Math. Methods Appl. Sci. 38(11), 2389–2402 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hassine, F.: Stability of elastic transmission systems with a local Kelvin–Voigt damping. Eur. J. Control 23, 84–93 (2015)

    Article  MathSciNet  Google Scholar 

  25. Hassine, F.: Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin–Voigt damping. Int. J. Control 89(10), 1933–1950 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hayek, A., Nicaise, S., Salloum, Z., Wehbe, A.: A transmission problem of a system of weakly coupled wave equations with Kelvin–Voigt dampings and non-smooth coefficient at the interface. SeMA J. 77(3), 305–338 (2020)

    Article  MathSciNet  Google Scholar 

  27. Huang, F.: On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control Optim. 26(3), 714–724 (1988)

    Article  MathSciNet  Google Scholar 

  28. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  Google Scholar 

  29. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  30. Liu, K., Chen, S., Liu, Z.: Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping. SIAM J. Appl. Math. 59(2), 651–668 (1998)

    Article  MathSciNet  Google Scholar 

  31. Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56(4), 630–644 (2005)

    Article  MathSciNet  Google Scholar 

  32. Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60(1), 54–69 (2009)

    Article  MathSciNet  Google Scholar 

  33. Liu, Z., Zhang, Q.: Stability of a string with local Kelvin–Voigt damping and nonsmooth coefficient at interface. SIAM J. Control Optim. 54(4), 1859–1871 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liu, Z., Zhang, Q.: Stability of a string with local Kelvin-Voigtdamping and nonsmooth coefficient at interface. SIAM J. Control Optim. 54(4), 1859–1871 (2016)

    Article  MathSciNet  Google Scholar 

  35. Najdi, N., Wehbe, A.: Weakly locally thermal stabilization of Bresse systems. Electron. J. Differ. Equ. 182, 19 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Nasser, R., Noun, N., Wehbe, A.: Stabilization of the wave equations with localized Kelvin-Voigt type damping under optimal geometric conditions. C.R. Math. 357(3), 272–277 (2019)

    Article  MathSciNet  Google Scholar 

  37. Noun, N., Wehbe, A.: Stabilisation faible interne locale de système élastique de Bresse. C. R. Math. Acad. Sci. Paris 350(9–10), 493–498 (2012)

    Article  MathSciNet  Google Scholar 

  38. Oquendo, H.P.: Frictional versus Kelvin–Voigt damping in a transmission problem. Math. Methods Appl. Sci. 40(18), 7026–7032 (2017)

    Article  MathSciNet  Google Scholar 

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  40. Rivera, J.E.M., Villagran, O.V., Sepulveda, M.: Stability to localized viscoelastic transmission problem. Commun. Partial Differ. Equ. 43(5), 821–838 (2018)

    Article  MathSciNet  Google Scholar 

  41. Wehbe, A., Issa, I., Akil, M.: Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients. Acta Appl. Math. 171(1), 23 (2021)

    Article  MathSciNet  Google Scholar 

  42. Wehbe, A., Youssef, W.: Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl. Anal. 88(7), 1067–1078 (2009)

    Article  MathSciNet  Google Scholar 

  43. Wehbe, A., Youssef, W.: Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51(10), 103523 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Akil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some notions and stability theorems

Appendix A. Some notions and stability theorems

In order to make this paper more self-contained, we recall in this short appendix some notions and stability results used in this work.

Definition A.1

Assume that A is the generator of \(C_0\)-semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on a Hilbert space H. The \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\) is said to be

  1. (1)

    Strongly stable if

    $$\begin{aligned} \lim _{t\rightarrow +\infty } \Vert e^{tA}x_0\Vert _H=0,\quad \forall \, x_0\in H. \end{aligned}$$
  2. (2)

    Exponentially (or uniformly) stable if there exists two positive constants M and \(\varepsilon \) such that

    $$\begin{aligned} \Vert e^{tA}x_0\Vert _{H}\le Me^{-\varepsilon t}\Vert x_0\Vert _{H},\quad \forall \, t>0,\ \forall \, x_0\in H. \end{aligned}$$
  3. (3)

    Polynomially stable if there exists two positive constants C and \(\alpha \) such that

    $$\begin{aligned} \Vert e^{tA}x_0\Vert _{H}\le Ct^{-\alpha }\Vert A x_0\Vert _{H},\quad \forall \, t>0,\ \forall \, x_0\in D(A). \end{aligned}$$

    \(\square \)

To show the strong stability of the \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\), we rely on the following result due to Arendt–Batty [8].

Theorem A.2

Assume that A is the generator of a C\(_0\)-semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on a Hilbert space H. If A has no pure imaginary eigenvalues and \(\sigma \left( A\right) \cap i\mathbb {R}\) is countable, where \(\sigma \left( A\right) \) denotes the spectrum of A, then the \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\) is strongly stable. \(\square \)

Concerning the characterization of polynomial stability stability of a \(C_0\)-semigroup of contraction \(\left( e^{tA}\right) _{t\ge 0}\), we rely on the following result due to Borichev and Tomilov [12] (see also [11, 31])

Theorem A.3

Assume that A is the generator of a strongly continuous semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on \(\mathcal {H}\). If \( i\mathbb {R}\subset \rho (\mathcal {A})\), then for a fixed \(\ell >0\) the following conditions are equivalent

$$\begin{aligned} \sup _{\lambda \in \mathbb {R}}\left\| \left( i\lambda I-\mathcal {A}\right) ^{-1}\right\| _{\mathcal {L}\left( \mathcal {H}\right) }= & {} O\left( |\lambda |^\ell \right) , \end{aligned}$$
(5.1)
$$\begin{aligned} \Vert e^{t\mathcal {A}}U_{0}\Vert ^2_{{\mathcal {H}}}\le & {} \frac{C}{t^{\frac{2}{\ell }}}\Vert U_0\Vert ^2_{D({\mathcal {A}})},\forall t>0, U_0\in D({\mathcal {A}}), \text {for some} C>0. \end{aligned}$$
(5.2)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akil, M., Badawi, H., Nicaise, S. et al. On the stability of Bresse system with one discontinuous local internal Kelvin–Voigt damping on the axial force. Z. Angew. Math. Phys. 72, 126 (2021). https://doi.org/10.1007/s00033-021-01558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01558-y

Mathematics Subject Classification

Keywords

Navigation