Skip to main content
Log in

Boundedness and stabilization of solutions to a chemotaxis May–Nowak model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The chemotaxis May–Nowak model

$$\begin{aligned} \left\{ \begin{array}{llll} u_t=D_u \Delta u-\nabla \cdot (uf\left( u\right) \nabla v)-g\left( u\right) w+r-u, &{}x\in \Omega ,\quad t>0,\\ v_t=D_v \Delta v+g\left( u\right) w-v, &{}x\in \Omega ,\quad t>0,\\ w_t=D_w \Delta w+v-w, &{}x\in \Omega ,\quad t>0, \end{array} \right. \end{aligned}$$

is considered in a bounded domain \(\Omega \subset \mathbb {R}^n (n\ge 1)\) with homogeneous Neumann boundary conditions and the parameters \(D_u,D_v,D_w,r>0\). The chemotactic sensitivity function and the conversion function are given by \(f\left( s\right) =K_{f}\left( 1+s\right) ^{-\alpha }\) and \(g(s) = K_{g} s^{\beta }\) for all \(s > 0\), respectively, where \(K_{f}\in \mathbb {R}\), \(K_{g}, \alpha , \beta >0\). The global boundedness of solution is shown if the following case holds:

$$\begin{aligned} \begin{aligned} \alpha > \max \left\{ \frac{n\beta }{4}, \frac{\beta }{2}, \frac{n(n+2)}{6n+8}\beta +\frac{1}{2} \right\} . \end{aligned} \end{aligned}$$

Moreover, for the large time behavior of the global smooth bounded solution, the basic reproduction number \(R_{0}:=K_{g}r^{\beta }\) has an important effect (Lai and Zou in Bull Math Biol 76:2806-2833, 2014; Wang et al. in Nonlinear Anal RWA 33:253-283, 2017), and system has the infection-free steady state if \(0<R_0<1\) and the coexistence equilibrium steady state if \(R_0>1\) (Korobeinikov in Bull Math Biol 66:879-883, 2004). By constructing an appropriate energy function, under the conditions that \(K_f\) and \(K_g\) are appropriately mild, it is shown that: \(\bullet \) If \(R_0\in (0,1)\), then any global bounded solution converges to \(\left( r, 0, 0\right) \) as \(t\rightarrow \infty \); \(\bullet \) If \(R_0\in (1,\infty )\), \(\beta =1\), then any global bounded solution converges to \(\bigg ( \frac{1}{K_g}, r-\frac{1}{K_g}, r-\frac{1}{K_g} \bigg )\) as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bellomo, N., Painter, K.J., Tao, Y., Winkler, M.: Occurrence vs. absence of taxis-driven instabilities in a May–Nowak model for virus infection. SIAM J. Appl. Math. 79, 1990–2010 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bellomo, N., Tao, Y.: Stabilization in a chemotaxis model for virus infection. Discrete Contin. Dyn. Syst. Ser. S. 13, 105–117 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. 94, 6971–6976 (1997)

    Article  Google Scholar 

  6. Campos, D., Méndez, V., Fedotov, S.: The effects of distributed life cycles on the dynamics of viral infections. J. Theor. Biol. 254, 430–438 (2008)

    Article  MathSciNet  Google Scholar 

  7. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  8. Fuest, M.: Boundedness enforced by mildly saturated conversion in a chemotaxis-May–Nowak model for virus infection. J. Math. Anal. Appl. 472, 1729–1740 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier–Stokes system with competitive kinetics. J. Differ. Equ. 263, 470–490 (2017)

    Article  MathSciNet  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hu, B., Lankeit, J.: Boundedness of solutions to a virus infection model with saturated chemotaxis. J. Math. Anal. Appl. 468, 344–358 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 258, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  14. Jones, E., Roemer, P., Raghupathi, M., Pankavich, S.: Analysis and simulation of the three-component model of HIV dynamics. SIAM Undergr. Res. Online 7, 89–105 (2014)

    Article  Google Scholar 

  15. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  16. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004)

    Article  MathSciNet  Google Scholar 

  17. Lai, X., Zou, X.: Repulsion effect on superinfecting virions by infected cells. Bull. Math. Biol. 76, 2806–2833 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  19. Liu, D., Tao, Y.: Boundedness in a chemotaxis system with nonlinear signal production. Appl. Math. J. Chin. Univ. Ser. B. 31, 379–388 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 31, 851–875 (2014)

    Article  MathSciNet  Google Scholar 

  21. Nirenberg, L.: An extended interpolation inequality. Ann Scuo. Norm. Sup Pisa. 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  22. Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  23. Nowak, M., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, London (2000)

    MATH  Google Scholar 

  24. Pan, X., Wang, L.: Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. C. R. Mathématique. (2020) to appear

  25. Pan, X., Wang, L.: On a quasilinear fully parabolic two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. (2021). https://doi.org/10.3934/dcdsb.2021047

    Article  Google Scholar 

  26. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  27. Stancevic, O., Angstmann, C., Murray, J.M., Henry, B.I.: Turing patterns from dynamics of early HIV infection. Bull. Math. Biol. 75, 774–795 (2013)

    Article  MathSciNet  Google Scholar 

  28. Tao, Y., Wang, Z.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, L., Mu, C.: A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. 25, 4585–4601 (2020)

    MathSciNet  Google Scholar 

  31. Wang, L., Li, Y., Mu, C.: Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34, 789–802 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic-elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wang, W., Ma, W., Lai, X.: Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis. Nonlinear Anal. RWA 33, 253–283 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wei, X., Ghosn, S.K., Taylor, M.E., Johnson, V.A.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995)

    Article  Google Scholar 

  35. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: Boundedness in a chemotaxis-May–Nowak model for virus dynamics with mildly saturated chemotactic sensitivity. Acta Appl. Math. 163, 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  38. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  39. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  41. Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for his/her positive and useful comments, which helped him improve further the exposition of the paper. This work is supported by the Chongqing Research and Innovation Project of Graduate Students (No. CYS20271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Wang, L. & Hu, X. Boundedness and stabilization of solutions to a chemotaxis May–Nowak model. Z. Angew. Math. Phys. 72, 52 (2021). https://doi.org/10.1007/s00033-021-01491-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01491-0

Keywords

Mathematics Subject Classification

Navigation