Skip to main content
Log in

Global well-posedness and large deviations for 3D stochastic Burgers equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the stochastic vector-valued Burgers equations with non-periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, toward obtaining the global well-posedness, we derive a priori estimates of the local solution by utilizing the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin–Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Space. Academic Press, New York (1975)

    Google Scholar 

  2. Bakhtin, Y.: Burgers equation with random boundary conditions. Proc. Am. Math. Soc. 135, 2257–2262 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bakhtin, Y., Li, L.: Thermodynamic limit for directed polymers and stationary solutions of the Burgers equation. Commun. Pure Appl. Math. LXXII, 0536–0619 (2019)

    MathSciNet  Google Scholar 

  4. Bakhtin, Y., Cator, E., Khanin, K.: Space-time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27, 193–238 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165, 211–232 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Beteman, H.: Some recent researches of the motion of fluid. Mon. Weather Rev. 43, 163–170 (1915)

    Google Scholar 

  7. Boritchev, A.: Multidimensional potential Burgers turbulence. Commun. Math. Phys. 342, 441–489 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26, 1641–1659 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Brzezniak, Z., Goldys, B., Neklyudov, M.: Multidimensional stochastic Burgers equation. SIAM J. Math. Anal. 46, 871–889 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390–1420 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Bui, T.: Non-stationary Burgers flows with vanishing viscosity in bounded domains of \({\mathbb{R}}^{3}\). Math. Z. 145, 69–79 (1975)

    MathSciNet  MATH  Google Scholar 

  13. Burgers, J.M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1(17), 1–53 (1939)

    MathSciNet  MATH  Google Scholar 

  14. Chambers, D.H., Adrian, R.J., Moin, P., Stewart, D.S., Sung, H.J.: Karhunen–Loéve expansion of Burgers’ model of turbulence. Phys. Fluids 31, 2573–2582 (1988)

    Google Scholar 

  15. Chan, T.: Scaling limits of Wick ordered KPZ equation. Commun. Math. Phys. 209, 671–690 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Da Prato, G., Debussche, A.: Stochastic Cahn–Hilliard equation. Nonlinear Anal. 26, 241–263 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Doran, R., Ismail, M., Lam, T.-Y., Lutwak, E. (eds.) Encyclopedia of Mathematics and its Application. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Da Prato, G., Debussche, A., Teman, R.: Stochastic Burgers’ equation. NoDEA 1, 389–402 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1993)

    MATH  Google Scholar 

  20. Dong, Z.: On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab. 21, 322–335 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Dong, Z., Xu, T.G.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 243, 631–678 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Dong, Z., Xu, L.H., Zhang, X.C.: Exponential ergodicity of stochastic Burgers equations driven by \(\alpha \)-stable processes. J. Stat. Phys. 154, 929–949 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    MATH  Google Scholar 

  24. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Forsyth, A.R.: Theory of Differential Equations, vol. 6. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  26. Gomes, D., Iturriaga, R., Khanin, K., Padilla, P.: Viscosity limit of stationary distributions for the random forced Burgers equation. Mosc. Math. J. 5, 613–631 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Gourcy, M.: Large deviation principle of occupation measure for stochastic Burgers equation. Ann. I’Inst. Henri Poincaré-PR 43, 441–459 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782–802 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Hosokawa, I., Yamamoto, K.: Turbulence in the randomly forced one dimensional Burgers flow. J. Stat. Phys. 245, 245–272 (1975)

    Google Scholar 

  30. Iturriaga, R., Khanin, K.: Burgers turbulence and random Lagrangian systems. Commun. Math. Phys. 232, 377–428 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Jeng, D.-T.: Forced model equation for turbulence. Phys. Fluids 12, 2006–2010 (1969)

    MATH  Google Scholar 

  32. Kardar, M., Parisi, M., Zhang, J.C.: Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    MATH  Google Scholar 

  33. Khanin, K., Zhang, K.: Hyperbolicity of minimizers and regularity of viscosity solutions for a random Hamilton–Jacobi equation. Commun. Math. Phys. 355, 803–837 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Kiselev, A., Ladyzhenskaya, O.A.: On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR. Ser. Mat. 21, 655–680 (1957). (in Russian)

    MathSciNet  Google Scholar 

  35. Mohammed, S., Zhang, T.S.: Stochastic Burgers equation with random initial velocities: a Malliavin calculus approach. SIAM J. Math. Anal. 45, 2396–2420 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  37. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  38. Temam, R.: Infinite Dimensional Dynamics Systems in Mechanics and Physics. Springer, New York (1988)

    MATH  Google Scholar 

  39. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. CBMS-NSF regional conference series in applied mathematics, vol. 66, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

    Google Scholar 

  40. Wang, G., Zeng, M., Guo, B.: Stochastic Burgers’ equation driven by fractional Brownian motion. J. Math. Anal. Appl. 371, 210–222 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Weinan, E., Khanin, K.M., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151, 877–900 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NNSF of China (Grant Nos. 11971077, 11801032), Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (No. 2008DP173182), China Postdoctoral Science Foundation funded project (No. 2018M641204), Natural Science Foundation Project of CQ (Grant No. cstc2016jcyjA0326), Fundamental Research Funds for the Central Universities (Grant Nos. 2018CDXYST0024, 63181314) and China Scholarship Council (Grant No.201506055003). Last but not least, we should deeply appreciate the reviewers who read our article carefully and gave valuable suggestions that improve our paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhou, G., Guo, B. et al. Global well-posedness and large deviations for 3D stochastic Burgers equations. Z. Angew. Math. Phys. 71, 30 (2020). https://doi.org/10.1007/s00033-020-1259-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1259-z

Keywords

Mathematics Subject Classification

Navigation