Skip to main content
Log in

Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study a Lotka–Volterra cooperative system with nonlocal dispersal under worsening habitats. By constructing appropriate vector super-/subsolutions combined with the monotone iteration scheme, we obtain the existence of bounded and positive forced waves connecting zero equilibrium to the coexistence state of the limiting system corresponding to the most favorable resource with the wave speed at which the habitat is worsening. Compared with the existence result of traveling wave to the homogeneous system, we find that the wave phenomenon is more likely to occur in such shifting environment. Here, we remove the common assumption that the dispersal kernels are compactly supported and symmetric. Further, we investigate the tail behavior of the forced waves, especially for the rate of convergence to the extinction state, and derive the long-time dynamics of two species. Our result shows that weak interspecies cooperation and nonlocal diffusion pattern cannot prevent species from disappearing eventually under such a worsening habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, X., Li, W.T., Shen, W.: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats. J. Differ. Equ. 260, 8590–8637 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Bao, X., Shen, W., Shen, Z.: Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Commun. Pure Appl. Anal. 18, 361–396 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Desvillettes, L., Diekmann, O.: Can climate change lead to gap formation? Ecol. Complex. 20, 264–270 (2014)

    Google Scholar 

  4. Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Fang, J.: Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Chen, X., Tsai, J.C., Wu, Y.: Longtime behavior of solutions of a SIS epidemiological model. SIAM J. Math. Anal. 49, 3925–3950 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Coville, J.: Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Differ. Equ. 2007, 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Coville, J.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244, 3080–3118 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Coville, J.: Travelling Fronts in Asymmetric Nonlocal Reaction Diffusion Equation: The Bistable and Ignition Case. Prépublication du CMM, (2012). Hal-00696208

  10. De Leenheer, P., Shen, W., Zhang, A.: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats. Nonlinear Anal. Real World Appl. 54, 103110 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Du, Y., Wei, L., Zhou, L.: Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary. J. Dynam. Differ. Equ. 30, 1389–1426 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Fang, J., Zhao, X.Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Gonzalez, P., Neilson, R.P., Lenihan, J.M., Drapek, R.J.: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010)

    Google Scholar 

  15. Han, B.S., Wang, Z.C., Du, Z.: Traveling waves for nonlocal Lotka–Volterra competition systems. Discrete Contin. Dyn. Syst. Ser. B 25, 1959–1983 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Amer. Math. Soc. 145, 4763–4771 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Jin, Y., Zhao, X.Q.: Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22, 1167–1189 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Lewis, M.A., Marculis, N.G., Shen, Z.: Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics. J. Math. Biol. 77, 1649–1687 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of s species with a shifting habitat edge. SIAM J. Appl. Math. 5, 1397–1417 (2014), Erratum: 75 (2015) 2379–2380

  22. Li, B., Bewick, S., Barnard, M.R., Fagan, W.F.: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bull. Math. Biol. 78, 1337–1379 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Li, W.T., Wang, J.B., Zhao, X.Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–1219 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Li, W.T., Wang, J.B., Zhao, X.Q.: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure. J. Dynam. Differ. Equ. 32, 1027–1064 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Li, X.S., Lin, G.: Traveling wavefronts in nonlocal dispersal and cooperative Lotka–Volterra system with delays. Appl. Math. Comput. 204, 738–744 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Lou, Y., Zhao, X.Q., Zhou, P.: Peng Global dynamics of a Lotka–Volterra competition-diffusion-advection system in heterogeneous environments. J. Math. Pures Appl. 121, 47–82 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Murray, J.D.: Mathematical Biology, II, Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York (2003)

    Google Scholar 

  29. Potapov, A.B., Lewis, M.A.: Climate and competition: The effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations. Commun. Appl. Nonlinear Anal. 19, 73–101 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Thomas, C.D., Cameron, A., Green, R.E., et al.: Extinction risk from climate change. Nature 427, 145–148 (2004)

    Google Scholar 

  32. Vo, H.-H.: Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ. 259, 4947–4988 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Wang, J.B., Li, W.T.: Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage. Sci. China Math. 62, 2505–2526 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Wang, J.B., Zhao, X.Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Am. Math. Soc. 147, 1467–1481 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Weinberger, H., Lewis, M., Li, B.: Analysis of linear conjecture for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Wu, C., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment. J. Differ. Equ. 267, 4890–4921 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Yang, Y., Wu, C., Li, Z.: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change. Appl. Math. Comput. 353, 254–264 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Yuan, Y., Wang, Y., Zou, X.: Spatial dynamics of a Lotka–Volterra model with a shifting habitat. Discrete Contin. Dyn. Syst., Ser. B 24, 5633–5671 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Yu, Z., Pei, J.: Stability of traveling wave fronts for a cooperative system with nonlocal dispersals. Japan J. Ind. Appl. Math. 35, 817–834 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, G.B., Zhao, X.Q.: Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 2852–2885 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, L., Li, W.T., Wang, Z.C.: Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel. Sci. China Math. 60, 1791–1804 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, L., Li, W.T., Wang, Z.C., Sun, Y.J.: Entire solutions for nonlocal dispersal equations with bistable nonlinearity: asymmetric case. Acta Math. Sin. (Engl. Ser.) 35, 1771–1794 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., Wang, W., Yang, J.: Persistence versus extinction for two competing species under a climate change. Nonlinear Anal. Model. Control 22, 285–302 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Zhou, Y., Kot, M.: Discrete-time growth-dispersal models with shifting species ranges. Theor. Ecol. 4, 13–25 (2011)

    Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees and the editor for their careful reading and valuable comments which led to an improvement in our original manuscript. The first author was partially supported by the Scientific Research Start-up Fee for High-level Talents (162301182740), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGSX01) and the National Natural Science Foundation of China (11901543). The second author was partially supported by the National Natural Science Foundation of China (11731005, 11671180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JB., Li, WT. Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats. Z. Angew. Math. Phys. 71, 147 (2020). https://doi.org/10.1007/s00033-020-01374-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01374-w

Keywords

AMS Subject Classification (2010)

Navigation