Skip to main content
Log in

Application of the Biot–Savart law to parabolic vortex segments using elliptic integrals

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Biot–Savart law is used in aerodynamic theory to calculate the velocity induced by curved vortex lines. Explicit formulas are developed, using multivariate Appell hypergeometric functions, for the velocity induced by a general parabolic vortex segment. The formulas are derived by constructing a particular pencil of elliptic curves whose period integrals provide the solution to the induced velocity. We use numerical integration and a perturbation expansion to evaluate the validity of our formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A numerical lifting-line method using horseshoe vortex sheets (May 2011)

  2. Anderson, J.D.: Fundamentals of Aerodynamics, 5th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  3. Beyer, F., Matha, D., Sebastian, T., Lackner, M.: Development, validation and application of a curved vortex filament model for free vortex wake analysis of floating offshore wind turbines. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Jan. 2012)

  4. Bhagwat, M.J., Leishman, J.G.: Self-induced velocity of a vortex ring using straight-line segmentation. J. Am. Helicopter Soc. 59, 1–7 (2014). https://doi.org/10.4050/JAHS.59.012004

    Article  Google Scholar 

  5. Bliss, D.B., Teske, M.E., Quackenbush, T.R.: A new methodology for free wake analysis using curved vortex elements. Technical Report NASA-CR-3958, NASA (1987)

  6. Brown, J.W., Churchill, R.V.: Complex Variables and Applications, 8th edn. McGraw-Hill, New York (2009)

    Google Scholar 

  7. Elliptic integrals: symmetry and symbolic integration, Turin (Dec. 1997)

  8. Govindarajan, B.M., Leishman, J.G.: Curvature corrections to improve the accuracy of free-vortex methods. J. Aircr. 53(2), 378–386 (2016). https://doi.org/10.2514/1.C033392

    Article  Google Scholar 

  9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th edn. Academic Press, Oxford (2014)

    MATH  Google Scholar 

  10. Gupta, S., Leishman, J.G.: Accuracy of the induced velocity from helicoidal wake vortices using straight-line segmentation. AIAA J. 43(1), 29–40 (2005). https://doi.org/10.2514/1.1213

    Article  Google Scholar 

  11. Kim, C.-J., Park, S.H., Sung, S.K., Jung, S.-N.: Dynamic modeling and analysis of vortex filament motion using a novel curve-fitting method. Chin. J. Aeronaut. 29(1), 5–65 (2016). https://doi.org/10.1016/j.cja.2015.12.019

    Article  Google Scholar 

  12. Kodaira, K.: On compact complex analytic surfaces, I. Ann. Math. 71(1), 111–152 (1960). https://doi.org/10.2307/1969881

    Article  MathSciNet  MATH  Google Scholar 

  13. Kodaira, K.: On compact analytic surfaces: II. Ann. Math. 77(3), 563–626 (1963). https://doi.org/10.2307/1970131

    Article  MATH  Google Scholar 

  14. Kodaira, K.: On compact analytic surfaces: III. Ann. Math. 78(1), 1–40 (1963). https://doi.org/10.2307/1970500

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuchemann, D.: A simple method for calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds. Technical Report 2935, Ministry of Supply Aeronautical Research Council (1956)

  16. Kuchemann, D.: The Aerodynamic Design of Aircraft, 1st edn. Pergamon Press Ltd, Oxford (1978)

    Google Scholar 

  17. Kuchemann, D., Weber, J.: The subsonic flow past swept wings at zero lift without and with body. Technical Report 2908, Ministry of Supply Aeronautical Research Council (1953)

  18. Kundu, P.K., Cohen, I.M., Dowling, D.R.: Fluid Mechanics, 5th edn. Academic Press, Oxford (2012)

    MATH  Google Scholar 

  19. Montgomery, Z., Hunsaker, D.F.: A propeller model based on a modern numerical lifting-line algorithm with an iterative semi-free wake solver. AIAA Scitech Forum (2018). https://doi.org/10.2514/6.2018-1264

    Article  Google Scholar 

  20. Nagati, M.G., Iversen, J.D., Vogel, J.M.: Vortex sheet modeling with curved higher-order panels. J. Aircr. 24(11), 776–782 (1987). https://doi.org/10.2514/3.45520

    Article  Google Scholar 

  21. Phillips, W.F., Snyder, D.O.: Modern adaptation of Prandtl’s classic lifting-line theory. J. Aircr. 37(4), 662–670 (2000). https://doi.org/10.2514/2.2649

    Article  Google Scholar 

  22. Phillips, W.F.: Mechanics of Flight, 2nd edn. Wiley, Berlin (2010)

    Google Scholar 

  23. Semi-empirical vortex step method for the lift and induced drag loading of 2D or 3D wings, California (Oct. 1997)

  24. Van Hoydonck, W., Gerritsma, M., van Tooren, M.: On core and curvature corrections used in straight-line vortex filament methods (Apr. 2012). arXiv:1204.2699

  25. Weissinger, J.: The lift distribution of swept-back wings. Technical Report 1120, NACA (1947)

  26. Wood, D.H., Li, D.: Assessment of the accuracy of representing a helical vortex by straight segments. AIAA J. 40(4), 647–651 (2002). https://doi.org/10.2514/2.1721

    Article  Google Scholar 

  27. Yoon, S.S., Heister, S.D.: Analytical formulas for the velocity field induced by an infinitely thin vortex ring. Int. J. Numer. Methods Fluids 44(6), 665–672 (2004). https://doi.org/10.1002/fld.666

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Simons Foundation (Grant No. 202367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Malmendier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malmendier, A., Reid, J.T. Application of the Biot–Savart law to parabolic vortex segments using elliptic integrals. Z. Angew. Math. Phys. 71, 104 (2020). https://doi.org/10.1007/s00033-020-01319-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01319-3

Mathematics Subject Classification

Keywords

Navigation