Skip to main content
Log in

Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we obtain the global well-posedness and analyticity of the 3D fractional magnetohydrodynamics equations in the critical variable Fourier–Besov spaces, which can be seen as a meaningful complement to the corresponding results of the magnetohydrodynamics equations in usual Fourier–Besov spaces. Moreover, our results are also new for the MHD equations (i.e., in the case of the classical dissipation \(\alpha = 1\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H., Zhang, P.: On the global solution of a 3-D MHD system with initial data near equilibrium. Comm. Pure Appl. Math. 70, 1509–1561 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Almeida, M.F., Ferreira, L.C.F., Lima, L.S.M.: Uniform global well-posedness of the Navier–Stokes–Coriolis system in a new critical space. Math. Z. 287, 735–750 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bae, H., Biswas, A., Tadmor, E.: Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces. Arch. Ration. Mech. Anal. 205, 963–991 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 343. Springer, Heidelberg (2011)

    Google Scholar 

  6. Cannone, M.: Ondelettes. Paraproduits et Navier–Stokes. Arts et Sciences, Diderot editeur (1995)

  7. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana 13, 515–541 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Chemin, J.: Remarks on global existence for the incompressible Navier–Stokes equations. SIAM J. Math. Anal. 23, 20–28 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \(\mathbb{R}^{3}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 599–624 (2009)

  10. Chemin, J.-Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362, 2859–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cannone, M., Wu, G.: Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces. Nonlinear Anal. 75, 3754–3760 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cruz-Uribe, D.: The Hardy–Littlewood maximal operator on variable-\(L^p\) spaces. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), 147–156, Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville (2003)

  13. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces, Foundations and Harmonic Analysis. In: Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)

  14. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}(\mathbb{R}^n)\). Math. Inequal. Appl. 7, 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Diening, L., et al.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)

    MATH  Google Scholar 

  17. Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    MATH  Google Scholar 

  18. Fan, X.: Regularity of nonstandard Lagrangians \(f(x, \xi )\). Nonlinear Anal. 27, 669–678 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Fefferman, C. L.: Existence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute. http://www.claymath.org/sites/default/files/navierstokes.pdf. Accessed 1 May 2019

  21. Ferreira, L.C.F., Lima, L.S.M.: Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatsh. Math. 175, 491–509 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ferreira, L.C.F., Villamizar-Roa, E.J.: Exponentially-stable steady flow and asymptotic behavior for the magnetohydrodynamic equations. Commun. Math. Sci. 9, 499–516 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    MathSciNet  MATH  Google Scholar 

  25. He, C., Huang, X., Wang, Y.: On some new global existence results for 3D magnetohydrodynamic equations. Nonlinearity 27, 343–352 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Hopf, E.: On the initial value problem for the basic hydrodynamic equations. Math. Nachr. 4, 213–231 (1951)

    MathSciNet  Google Scholar 

  27. Iwabuchi, T.: Global well-posedness for Keller–Segel system in Besov type spaces. J. Math. Anal. Appl. 379, 930–948 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal. 267, 1321–1337 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equations in \(\mathbb{R}^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    MathSciNet  MATH  Google Scholar 

  30. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations. J. Differ. Equ. 250, 3859–3873 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Kováčik, O., Rákosňik, J.: On spaces \(L^p(x)\) and \(W^{k, p}(x)\). Czechoslovak Math. J. 116, 592–618 (1991)

    MATH  Google Scholar 

  33. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differ. Equ. 19, 959–1014 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Lei, Z., Lin, F.: Global mild solutions of Navier–Stokes equations. Commun. Pure Appl. Math. 64, 1297–1304 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Lemarié-Rieusset, P. G.: Recent developments in the Navier–Stokes problem. Chapman & Hall\(\backslash \) CRC Research Notes in Mathematics, vol. 431. Chapman & Hall\(\backslash \) CRC, Boca Raton, FL (2002)

  36. Leray, J.: On the motion of a viscous liquid filling space. Acta Math. 63, 193–248 (1934)

    MathSciNet  MATH  Google Scholar 

  37. Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Lin, F., Zhang, P.: Global small solutions to MHD type system (I): 3-D case. Commun. Pure Appl. Math. 67, 531–580 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Liu, Q., Zhao, J.: Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier–Herz spaces. J. Math. Anal. Appl. 420, 1301–1315 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Ma, H., Zhai, X., Yan, W., Li, Y.: Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov–Sobolev-type spaces. Z. Angew. Math. Phys. 68, 14 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Orlicz, W.: Über konjugierte Exponentenfolgen. Studia Math. 3, 200–212 (1931)

    MATH  Google Scholar 

  42. Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces. Commun. Comput. Phys. 307, 713–759 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Planchon, F.: Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in \(\mathbb{R}^3\). Ann. Inst. Henri Poincare 13, 319–336 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Ru, S., Abidin, M.Z.: Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents. Comput. Math. Appl. 77, 1082–1090 (2019)

    MathSciNet  Google Scholar 

  45. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl., vol. 3. Walter de Gruyter & Co., Berlin (1996)

  46. R\(\rm \mathring{u}\)žička, M.: Electrorheological Fluids, Modeling and Mathematical Theory. Lecture Notes in Math., vol. 1748, Springer-Verlag, Berlin (2000)

  47. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    MathSciNet  MATH  Google Scholar 

  48. Wang, W.: Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–Coriolis equations in Besov spaces. Nonlinear Anal. Real World Appl 52, 103048 (2020). https://doi.org/10.1016/j.nonrwa.2019.103048

    Article  MathSciNet  Google Scholar 

  49. Wang, W.: Global well-posedness and analyticity for the generalized rotating Navier–Stokes equations in Fourier–Herz spaces (manuscript)

  50. Wang, W., Wu, G.: Global mild solution of the generalized Navier–Stokes equations with the Coriolis force. Appl. Math. Lett. 76, 181–186 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Wang, Y., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. Real World Appl. 17, 245–251 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Xu, J.-S.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math. Ann. 317, 635–675 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269, 1840–1898 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Ye, Z.: Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann. Mat. Pura Appl. 4(195), 1111–1121 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, T.: Global wellposedness problem for the 3-D incompressible anisotropic Navier–Stokes equations in an anisotropic space. Comm. Math. Phys. 287, 211–224 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to express his thanks to Professor Ping Zhang from the Academy of Mathematics and Systems Science in Chinese Academy of Sciences for giving a guide to mathematical fluid mechanics. And the author would like to express his gratitude to the anonymous referees for their careful reading of the paper and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11771423, 11871452), the NSFC of Fujian (Grant Nos. 2017J01564, 2017J01563), and the National Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 19KJD100007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W. Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces. Z. Angew. Math. Phys. 70, 163 (2019). https://doi.org/10.1007/s00033-019-1210-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1210-3

Keywords

Mathematics Subject Classification

Navigation