Skip to main content
Log in

Line and point defects in nonlinear anisotropic solids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects. In particular, we determine the stress fields of (i) a parallel cylindrically symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, (ii) a cylindrically symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, (iii) a distribution of edge dislocations in an orthotropic medium, and (iv) a spherically symmetric distribution of point defects in a transversely isotropic spherical ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya, A.: A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49(4), 761–784 (2001)

    Article  MATH  Google Scholar 

  2. Amar, M.B., Goriely, A.: Growth and instability in elastic tissues. J. Mech. Phys. Solids 53(10), 2284–2319 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bilby, B., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 231, pp 263–273. The Royal Society (1955)

  4. Brake, M.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 49(22), 3129–3141 (2012)

    Article  Google Scholar 

  5. Brake, M.: An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts. Int. J. Solids Struct. 62, 104–123 (2015)

    Article  Google Scholar 

  6. Clayton, J.: Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 95(5), 476–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demirkoparan, H., Merodio, J.: Bulging bifurcation of inflated circular cylinders of doubly fiber-reinforced hyperelastic material under axial loading and swelling. Math. Mech. Solids 22(4), 666–682 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Z. Angew. Math. Mech. (ZAMM) 91(6), 433–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. do Carmo, M.: Riemannian Geometry. Mathematics: Theoryand Applications. Birkhäuser, Boston (1992). ISBN 1584883553

    Book  Google Scholar 

  10. Doyle, T., Ericksen, J.: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115 (1956)

    Article  MathSciNet  Google Scholar 

  11. Ehret, A.E., Itskov, M.: Modeling of anisotropic softening phenomena: application to soft biological tissues. Int. J. Plast. 25(5), 901–919 (2009)

    Article  MATH  Google Scholar 

  12. Epstein, M., Elzanowski, M.: Material Inhomogeneities and Their Evolution: A Geometric Approach. Springer, Berlin (2007)

    MATH  Google Scholar 

  13. Eshelby, J.: LXXXII. Edge dislocations in anisotropic materials. Lond. Edinb. Dublin Philos. Mag. J. Sci. 40(308), 903–912 (1949)

    Article  MATH  Google Scholar 

  14. Eshelby, J., Read, W., Shockley, W.: Anisotropic elasticity with applications to dislocation theory. Acta metall. 1(3), 251–259 (1953)

    Article  Google Scholar 

  15. Gairola, B.: Nonlinear Elastic Problems. In: Nabarro, F.R.N. (ed.) Dislocations in Solids. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  16. Ghaednia, H., Marghitu, D.B.: Permanent deformation during the oblique impact with friction. Arch. Appl. Mech. 86(1–2), 121–134 (2016)

    Article  Google Scholar 

  17. Giordano, S., Palla, P., Colombo, L.: Nonlinear elasticity of composite materials. Eur. Phys. J. B 68(1), 89–101 (2009)

    Article  Google Scholar 

  18. Golgoon, A., Yavari, A.: On the stress field of a nonlinear elastic solid torus with a toroidal inclusion. J. Elast. 128(1), 115–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golgoon, A., Yavari, A.: Nonlinear elastic inclusions in anisotropic solids. J. Elast. 130(2), 239–269 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golgoon, A., Sadik, S., Yavari, A.: Circumferentially-symmetric finite eigenstrains in incompressible isotropic nonlinear elastic wedges. Int. J. Non-Linear Mech. 84, 116–129 (2016)

    Article  Google Scholar 

  21. Goriely, A., Moulton, D.E., Vandiver, R.: Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues. Europhys. Lett. 91(1), 18001 (2010)

    Article  Google Scholar 

  22. Head, A.: Unstable dislocations in anisotropic crystals. Physica Status Solidi (b) 19(1), 185–192 (1967)

    Article  MathSciNet  Google Scholar 

  23. Hooshmand, M., Mills, M., Ghazisaeidi, M.: Atomistic modeling of dislocation interactions with twin boundaries in ti. Model. Simul. Mater. Sci. Eng. 25(4), 045003 (2017)

    Article  Google Scholar 

  24. Indenbom, V.: Dislocations and internal stresses. In: Modern Problems in Condensed Matter Sciences, Vol. 31, pp. 1–174. Elsevier (1992)

  25. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. Trans. ASME-F-J. Tribol. 127(2), 343–354 (2005)

    Article  Google Scholar 

  26. Jackson, R.L., Ghaednia, H., Pope, S.: A solution of rigid-perfectly plastic deep spherical indentation based on slip-line theory. Tribol. Lett. 58(3), 47 (2015)

    Article  Google Scholar 

  27. Katanaev, M.: Introduction to the geometric theory of defects. arXiv preprint cond-mat/0502123 (2005)

  28. Kinoshita, N., Mura, T.: Elastic fields of inclusions in anisotropic media. Physica Status Solidi (a) 5(3), 759–768 (1971)

    Article  Google Scholar 

  29. Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fract. 13(5), 611–639 (1977)

    Article  MathSciNet  Google Scholar 

  30. Kondo, K.: Geometry of elastic deformation and incompatibility. Mem. Unifying Study Basic Probl. Eng. Sci. Means Geom. 1, 5–17 (1955a)

    Google Scholar 

  31. Kondo, K.: Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. Mem. Unifying Study Basic Probl. Eng. Sci. Means Geom. 1, 6–17 (1955b)

    Google Scholar 

  32. Li, J.Y., Dunn, M.L.: Anisotropic coupled-field inclusion and inhomogeneity problems. Philos. Mag. A 77(5), 1341–1350 (1998)

    Article  Google Scholar 

  33. Liu, I., et al.: On representations of anisotropic invariants. Int. J. Eng. Sci. 20(10), 1099–1109 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lothe, J.: Dislocations in anisotropic media. In: Indenbom, V.L., Lothe, J. (eds.) Elastic Strain Fields and Dislocation Mobility, pp. 269–328. North-Holland, Amsterdam (1992)

    Chapter  Google Scholar 

  35. Lu, J., Papadopoulos, P.: A covariant constitutive description of anisotropic non-linear elasticity. Z. Angew. Math. Phys. (ZAMP) 51(2), 204–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, New York (1983)

    MATH  Google Scholar 

  37. Mazzucato, A.L., Rachele, L.V.: Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media. J. Elast. 83(3), 205–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Merodio, J., Ogden, R.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40(18), 4707–4727 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Merodio, J., Ogden, R.: Tensile instabilities and ellipticity in fiber-reinforced compressible non-linearly elastic solids. Int. J. Eng. Sci. 43(8), 697–706 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Merodio, J., Ogden, R.: The influence of the invariant \({I}_8\) on the stress-deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids. Int. J. Non-Linear Mech. 41(4), 556–563 (2006)

    Article  MATH  Google Scholar 

  41. Moulton, D.E., Goriely, A.: Anticavitation and differential growth in elastic shells. J. Elast. 102(2), 117–132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Leiden (1982)

    Book  Google Scholar 

  43. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  44. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27(1), 1–32 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51(3), 032902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ozakin, A., Yavari, A.: Affine development of closed curves in Weitzenböck manifolds and the Burgers vector of dislocation mechanics. Math. Mech. Solids 19(3), 299–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pence, T.J., Tsai, H.: Swelling-induced microchannel formation in nonlinear elasticity. IMA J. Appl. Math. 70(1), 173–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Petersen, P.: Riemannian Geometry, vol. 171. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  49. Rosakis, P., Rosakis, A.J.: The screw dislocation problem in incompressible finite elastostatics: a discussion of nonlinear effects. J. Elast. 20(1), 3–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sadik, S., Yavari, A.: Small-on-large geometric anelasticity. Proc. R. Soc. Lond. A. Math. Phys. Eng. Sci. https://doi.org/10.1098/rspa.2016.0659 (2016)

  51. Sadik, S., Yavari, A.: Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids 22(7), 1546–1587 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Schaefer, H., Kronmüller, H.: Elastic interaction of point defects in isotropic and anisotropic cubic media. Physica Status Solidi (b) 67(1), 63–74 (1975)

    Article  Google Scholar 

  53. Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys. Solids 98, 12–48 (2017)

    Article  MathSciNet  Google Scholar 

  54. Spencer, A.: Part III. Theory of invariants. Contin. Phys. 1, 239–353 (1971)

    Google Scholar 

  55. Spencer, A.: The formulation of constitutive equation for anisotropic solids. In: Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, pp. 3–26. Springer (1982)

  56. Stojanovic, R., Djuric, S., Vujosevic, L.: On finite thermal deformations. Arch. Mech. Stosow. 16, 103–108 (1964)

    MathSciNet  Google Scholar 

  57. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, New York (1982)

    Book  MATH  Google Scholar 

  58. Teutonico, L.: Uniformly moving dislocations of arbitrary orientation in anisotropic media. Phys. Rev. 127(2), 413 (1962)

    Article  Google Scholar 

  59. Triantafyllidis, N., Abeyaratne, R.: Instabilities of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50(1), 149–156 (1983)

    Article  MATH  Google Scholar 

  60. Truesdell, C.: The physical components of vectors and tensors. Z. Angew. Math. Mech. (ZAMM) 33(10–11), 345–356 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  61. Vergori, L., Destrade, M., McGarry, P., Ogden, R.W.: On anisotropic elasticity and questions concerning its finite element implementation. Comput. Mech. 52(5), 1185–1197 (2013)

    Article  MATH  Google Scholar 

  62. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales scientifiques de l’École normale supérieure 24, 401–517 (1907)

    Article  MATH  Google Scholar 

  63. Wang, C.-C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27(1), 33–94 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, J., Yadav, S., Hirth, J., Tomé, C., Beyerlein, I.: Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater. Res. Lett. 1(3), 126–132 (2013)

    Article  Google Scholar 

  65. Wesołowski, Z., Seeger, A.: On the screw dislocation in finite elasticity. In: Mechanics of Generalized Continua, pp. 294–297. Springer (1968)

  66. Willis, J.: Anisotropic elastic inclusion problems. Q. J. Mech. Appl. Math. 17(2), 157–174 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  67. Willis, J.: Stress fields produced by dislocations in anisotropic media. Philos. Mag. 21(173), 931–949 (1970)

    Article  MATH  Google Scholar 

  68. Willis, J.R.: Second-order effects of dislocations in anisotropic crystals. Int. J. Eng. Sci. 5(2), 171–190 (1967)

    Article  MATH  Google Scholar 

  69. Wolfram, I.: Mathematica. Version 11.0. Wolfram Research Inc., Champaign (2016)

    Google Scholar 

  70. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781–830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yavari, A.: On the wedge dispiration in an inhomogeneous isotropic nonlinear elastic solid. Mech. Res. Commun. 78, 55–59 (2016)

    Article  Google Scholar 

  72. Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205, 59–118 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468, 3902–3922 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yavari, A., Goriely, A.: Nonlinear elastic inclusions in isotropic solids. Proc. R. Soc. A 469(2160), 20130415 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102 (2013b)

    Article  MathSciNet  Google Scholar 

  76. Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems in anelasticity. Proc. R. Soc. A 470(2169), 20140403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yavari, A., Marsden, J.E., Ortiz, M.: On the spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 85–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yu, H.: Two-dimensional elastic defects in orthotropic bicrystals. J. Mech. Phys. Solids 49(2), 261–287 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yu, H., Sanday, S., Rath, B. Chang, C.: Elastic fields due to defects in transversely isotropic bimaterials. In: Proceedings of the Royal Society of London A, Vol. 449, pp. 1–30. The Royal Society (1995)

  80. Zheng, Q.-S., Spencer, A.: Tensors which characterize anisotropies. Int. J. Eng. Sci. 31(5), 679–693 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies, vol. 47. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF—Grant No. CMMI 1561578, ARO Grant No. W911NF-18-1-0003, and AFOSR—Grant No. FA9550-12-1-0290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golgoon, A., Yavari, A. Line and point defects in nonlinear anisotropic solids. Z. Angew. Math. Phys. 69, 81 (2018). https://doi.org/10.1007/s00033-018-0973-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0973-2

Keywords

Mathematics Subject Classification

Navigation