Skip to main content
Log in

Transversely isotropic higher-order averaged structure tensors

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  2. Hurschler, C., Loitz-Ramage, B., Vanderby Jr., R.: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119, 392–399 (1997)

    Article  Google Scholar 

  3. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  4. Federico, S., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41(16), 3309–3313 (2008)

    Article  Google Scholar 

  5. Kanatani, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lubarda, V.A., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct. 30, 2859–2877 (1993)

    Article  MATH  Google Scholar 

  7. Voyiadjis, G.Z., Kattan, P.I.: Damage mechanics with fabric tensors. Mech. Adv. Mater. Struct. 13, 285–301 (2006)

    Article  Google Scholar 

  8. Holzapfel, G.A., Ogden, R.W.: On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A/Solids 49, 561–569 (2015)

    Article  MathSciNet  Google Scholar 

  9. Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface 12, 20150188 (2015)

    Article  Google Scholar 

  10. Federico, S., Herzog, W.: On the permeability of fibre-reinforced porous materials. Int. J. Solids Struct. 45, 2160–2172 (2008)

    Article  MATH  Google Scholar 

  11. Vasta, M., Gizzi, A., Pandolfi, A.: On three- and two-dimensional fiber distributed models of biological tissues. Probab. Eng. Mech. 37, 170–179 (2014)

    Article  Google Scholar 

  12. Gizzi, A., Vasta, M., Pandolfi, A.: Modeling collagen recruitment in hyperelastic bio-material models with statistical distribution of the fiber orientation. Int. J. Eng. Sci. 78, 48–60 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gizzi, A., Pandolfi, A., Vasta, M.: Statistical characterization of the anisotropic strain energy in soft materials with distributed fibers. Mech. Mater. 92, 119–138 (2016)

    Article  Google Scholar 

  14. Federico, S.: Porous materials with statistically oriented reinforcing fibres. In: Dorfmann, L., Ogden, R.W. (eds.) Nonlinear Mechanics of Soft Fibrous Materials, CISM Courses and Lectures No. 559, pp. 49–120. International Centre for Mechanical Sciences, Springer, Berlin (2015)

  15. Hashlamoun, K., Grillo, A., Federico, S.: Efficient evaluation of the material response of tissues reinforced by statistically oriented fibres. Z. Angew. Math. Phys. 67(113), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Kanatani, K.: Stereological determination of structural anisotropy. Int. J. Eng. Sci. 22, 531–546 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliff (1983)

    MATH  Google Scholar 

  18. Epstein, M.: The Geometrical Language of Continuum Mechanics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  19. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  22. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Walpole, L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981)

    Article  MATH  Google Scholar 

  24. Walpole, L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. A 391, 149–179 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Advani, S.G., Tucker, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)

    Article  Google Scholar 

  26. Spiegel, M.R.: Advanced Mathematics. McGraw-Hill, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Federico.

Additional information

Dedicated to the memory of Prof. Gaetano Giaquinta (Catania, Italy, 25 November 1945–13 August 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashlamoun, K., Federico, S. Transversely isotropic higher-order averaged structure tensors. Z. Angew. Math. Phys. 68, 88 (2017). https://doi.org/10.1007/s00033-017-0830-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0830-8

Keywords

Mathematics Subject Classification

Navigation