Skip to main content
Log in

Asymptotic approximations for pure bending of thin cylindrical shells

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

An Erratum to this article was published on 09 August 2017

This article has been updated

Abstract

A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel–Mushtari–Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further complemented by an alternative WKB approximation that provides comparable information with significantly less effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 August 2017

    An erratum to this article has been published.

References

  1. Yamaki, N.: Elastic Stability of Circular Cylindrical Shells. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  2. Kyriakides, S., Corona, E.: Mechanics of Offshore Pipelines 1: Buckling and Collapse. Elsevier Science, Oxford (2007)

    Google Scholar 

  3. Axelrad, E.L.: Theory of Flexible Shells. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  4. Brazier, L.G.: On the flexure of thin cylindrical shells and other thin sections. Proc. Roy. Soc. A 116, 104–114 (1927)

    Article  MATH  Google Scholar 

  5. Singer, J., Arbocz, J., Weller, T.: Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures, vol. 2. Wiley, New York (2002)

    Book  Google Scholar 

  6. Kyriakides, S., Ju, G.T.: Bifurcation and localization instabilities in cylindrical shells under bending, part 1: experiments. Int. J. Solids Struct. 29, 1117–1142 (1992)

    Article  Google Scholar 

  7. Emmerling, F.A.: Nonlinear bending of curved tubes. In: Axelrad, E.L., Emerling, F.A. (eds.) Flexible Shells: Theory and Applications, pp. 44–63. Springer, Berlin (1984)

    Google Scholar 

  8. Flügge, W.: Die Stabilitat der Kreiszylinderschale. Ing. Archiv. 3, 463–506 (1932)

    Article  MATH  Google Scholar 

  9. Seide, P., Weingarten, V.I.: On the buckling of circular cylindrical shells under pure bending. ASME J. Appl. Mech. 28, 112–116 (1961)

    Article  MathSciNet  Google Scholar 

  10. Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory. Springer, Wien (1991)

    Book  MATH  Google Scholar 

  11. Gould, P.L.: Analysis of Plates and Shells. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  12. Axelrad, E.L.: Refinement of the upper critical loading of pipe bending, taking account of the geometrical nonlinearity (in Russian). Izvestiia, AN, USSR, OTN, Mekhanika i Mashinostroenie 4, 123–139 (1965)

    Google Scholar 

  13. Axelrad, E.L.: On local buckling of thin shells. Int. J. Non Linear Mech. 20, 249–259 (1985)

    Article  MATH  Google Scholar 

  14. Reissner, E., Weinitschke, H.J.: Finite pure bending of circular cylindrical tubes. Q. Appl. Math. 20, 305–319 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabian, O.: Collapse of cylindrical elastic tubes under combined bending, pressure and axial loads. Int. J. Solids Struct. 13, 1257–1270 (1977)

    Article  MATH  Google Scholar 

  16. Stephens, W.B., Starnes, J.H., Almroth, Bo O.: Collapse of long cylindrical shells under combined bending and pressure loads. AIAA J. 13, 20–25 (1975)

    Article  MATH  Google Scholar 

  17. Corona, E., Vaze, S.P.: Buckling of elastic-plastic tubes under bending. Int. J. Mech. Sci. 38, 753–775 (1996)

    Article  Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  19. Tam, K.K.: On the asymptotic solution of the Orr-Sommerfeld equation by the method of multiple-scales. J. Fluid Mech. 34, 145–158 (1968)

    Article  MATH  Google Scholar 

  20. Long, L.N.: Uniformly-valid asymptotic solutions to the Orr-Sommerfeld equation using multiple scales. J. Eng. Math. 21, 167–178 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wollkind, D.J.: Singular perturbation techniques: a comparison of the method of matched asymptotic expansions with that of multiple scales. SIAM Rev. 19, 502–516 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bouthier, M.: Comparison of the matched asymptotic expansions method and the two-variable technique. Q. Appl. Math. 41, 407–422 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Coman, C.D., Haughton, D.M.: Localized wrinkling instabilities in radially stretched annular thin films. Acta Mech. 185, 179–200 (2006)

    Article  MATH  Google Scholar 

  24. Coman, C.D.: Remarks on elastic buckling for sectorial plates. Int. J. Eng. Sci. 47, 1002–1013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Coman, C.D.: Some applications of the WKB method to the wrinkling of bi-annular plates in tension. Acta Mech. 224, 399–423 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tovstik, P.E., Smirnov, A.L.: Asymptotic Methods in the Buckling of Elastic Shells. World Scientific Publishing, Singapore (2001)

    Book  MATH  Google Scholar 

  27. Coman, C.D.: Localized elastic buckling: non-linearities versus inhomogeneities. IMA J. Appl. Math. 75, 461–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Batdorf, S.B.: A simplified method of elastic-stability analysis for thin cylindrical shells. Report No. 874, Langley Memorial Aeronautical Laboratory, Langley Field, Va., pp. 25 (1947)

  29. Libai, A., Durban, D.: Buckling of cylindrical shells subjected to non-uniform axial loads. ASME J. Appl. Mech. 44, 714–720 (1977)

    Article  MATH  Google Scholar 

  30. Lebedev, N.N.: Special Functions and Their Applications. Dover Publications Inc., New York (1972)

    MATH  Google Scholar 

  31. Coman, C.D.: On interactive buckling in a sandwich structure. Z. Angew. Math. Phys. 61, 565–577 (2010)

    Article  MATH  Google Scholar 

  32. Steele, C.R.: Application of the WKB method in solid mechanics. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 3, pp. 243–295. Pergamon Press, New York (1976)

    Chapter  Google Scholar 

  33. Coman, C.D.: Uniform asymptotic approximations for a fourth-order differential equation with coalescing turning points. (in preparation)

  34. Amazigo, J.C., Budiansky, B., Carrier, G.F.: Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations. Int. J. Solids Struct. 6, 1341–1356 (1970)

    Article  MATH  Google Scholar 

  35. Coman, C.D.: Bifurcation instabilities in finite bending of circular cylindrical shells. Int. J. Eng. Sci. 119, 249–264 (2017). doi:10.1016/j.ijengsci.2017.06.022

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian D. Coman.

Additional information

The original version of this article was revised: Due to a typesetting error, Eq. 5.9 was incorrect in the original publication and it has been corrected now.

An erratum to this article is available at https://doi.org/10.1007/s00033-017-0840-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coman, C.D. Asymptotic approximations for pure bending of thin cylindrical shells. Z. Angew. Math. Phys. 68, 82 (2017). https://doi.org/10.1007/s00033-017-0826-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0826-4

Mathematics Subject Classification

Keywords

Navigation