Skip to main content
Log in

Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton–Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants \(\delta _F= 4.66920160\cdots \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avrutin, V., Dutta, P.S., Schanz, M., Banerjee, S.: Influence of a square-root singularity on the behaviour of piecewise smooth maps. Nonlinearity 23, 445–463 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avrutin, V., Schanz, M.: On the scaling properties of the period-increment scenario in dynamical systems. Chaos, Solitons Fractals 11, 1949–1955 (2000)

    Article  MATH  Google Scholar 

  3. Avrutin, V.; Schanz, M.: Border-collision period-doubling scenario, Phys. Rev. E70, 026222, 11 pages (2004)

  4. Avrutin, V., Schanz, M.: Period-doubling scenario without flip bifurcations in a one-dimensional map. Internat. J. Bifur. Chaos 15, 1267–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avrutin, V., Schanz, M., Banerjee, S.: Multi-parametric bifurcations in a piecewise-linear discontinuous map. Nonlinearity 19, 1875–1906 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banerjee, S., Grebogi, C.: Border collision bifurcations in two-dimensional piecewise smooth maps. Phys. Rev. E 59, 4052–4061 (1999)

    Article  Google Scholar 

  7. Bischi, G., Gardini, L., Tramontana, F.: Bifurcation curves in discontinuous maps. Discrete Contin. Dyn. Syst. Ser. B 13, 249–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Budd, C. J.: Non-smooth dynamical systems and the grazing bifurcation, In: Nonlinear mathematics and its applications (Guildford, 1995), 219-235. Cambridge Univ. Press, Cambridge, (1996)

  9. Chin, W., Ott, E., Nusse, H.E., Grebogi, C.: Grazing bifurcations in impact oscillators. Phys. Rev. E 50, 4427–4444 (1994)

    Article  MathSciNet  Google Scholar 

  10. Colombo, A., di Bernardo, M., Hogan, S.J., Jeffrey, M.R.: Bifurcations of piecewise smooth flows: perspectives, methodologies and open problems. Physica D 241, 1845–1860 (2012)

    Article  MathSciNet  Google Scholar 

  11. de Sousa Vieira, M.C., Lazo, E., Tsallis, C.: New road to chaos. Phys. Rev. A 35, 945–948 (1987)

    Article  MathSciNet  Google Scholar 

  12. de Sousa Vieira, M. C.; Tsallis, C.: The gap road to chaos and its main characteristics, In: Instabilities and nonequilibrium structures, II (Valparaíso, 1987), 75–88, Math. Appl., 50, Kluwer Acad. Publ., Dordrecht, (1989)

  13. di Bernardo, M., Budd, C.J., Champneys, A.R.: Normal form maps for grazing bifurcations in \(n\)-dimensional piecewise-smooth dynamical systems. Physica D 160, 222–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications. Springer-Verlag, London (2008)

    MATH  Google Scholar 

  15. di Bernardo, M., Feigin, M.I., Hogan, S.J., Homer, M.E.: Local analysis of \(C\)-bifurcations in \(n\)-dimensional piecewise-smooth dynamical systems. Chaos, Solitons and Fractals 10, 1881–1908 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. di Bernardo, M., Kowalczyk, P., Nordmark, A.B.: Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. Int. J. Bifur. Chaos 13, 2935–2948 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dankowicz, H., Nordmark, A.B.: On the origin and bifurcations of stick-slip oscillators. Physica D 136, 280–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dankowicz, H., Zhao, X.: Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators. Physica D 202, 238–257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Demeio, L., Lenci, S.: Asymptotic analysis of chattering oscillations for an impacting inverted pendulum. Quarterly Journal of Mechanics and Applied Mathematics 59, 419–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dutta, P.S., Routroy, B., Banerjee, S., Alam, S.S.: On the existence of low-period orbits in \(n\)-dimensional piecewise linear discontinuous maps. Nonlinear Dyn. 53, 369–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fečkan, M.: Bifurcation and chaos in discontinuous and continuous systems. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

  22. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Statist. Phys. 19, 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Statist. Phys. 21, 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gardini, L., Tramontana, F., Sushko, I.: Border collision bifurcations in one-dimensional linear-hyperbolic maps. Math. Comput. Simulation 81, 899–914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gardini, L., Tramontana, F.: Border collision bifurcation curves and their classification in a family of 1D discontinuous maps. Chaos Solitons Fractals 44, 248–259 (2011)

    Article  MathSciNet  Google Scholar 

  26. Glendinning, P., Los, J.E., Tresser, C.: Renormalisation between classes of maps. Phys. Lett. A 145, 109–112 (1990)

    Article  MathSciNet  Google Scholar 

  27. Glendinning, P.: Robust new routes to chaos in differential equations. Phys. Lett. A 168, 40–46 (1992)

    Article  MathSciNet  Google Scholar 

  28. Glendinning, P.: The anharmonic route to chaos: kneading theory. Nonlinearity 6, 349–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Glendinning, P.: Renormalization for the boundary of chaos in piecewise monotonic maps with a single discontinuity. Nonlinearity 27, 143–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Granados, A., Alsedà, L., Krupa, M.: The period adding and incrementing bifurcations: from rotation theory to applications, SIAM Rev., 2016, to appear (2016)

  31. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  32. Halse, C., Homer, M., di Bernardo, M.: \(C\)-bifurcations and period-adding in one-dimensional piecewise-smooth maps. Chaos, Solitons Fractals 18, 953–976 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hao, B.-L.: Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  34. Hao, B.-L., Zheng, W-M.: Applied symbolic dynamics and chaos, In: Directions in Chaos, vol. 7, World Scientific, Singapore, (1998)

  35. Hogan, S.J., Higham, L., Griffin, T.C.L.: Dynamics of a piecewise linear map with a gap. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463, 49–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kunze, M.: Non-Smooth Dynamical Systems. Springer-Verlag, Berlin-Heidelberg (2000)

    Book  MATH  Google Scholar 

  37. Kunze, M., Küpper, T.: Non-smooth dynamical systems: an overview, Ergodic theory, analysis, and efficient simulation of dynamical systems, pp. 431–452. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  38. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: A survey. Physica D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  39. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vibration 145, 279–297 (1991)

    Article  Google Scholar 

  40. Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including “period two to period three” for piecewise smooth systems. Physica D 57, 39–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nusse, H.E., Yorke, J.A.: Border-collision bifurcations for piecewise-smooth one-dimensional maps. Internat. J. Bifur. Chaos 5, 189–207 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Panchuk, A., Sushko, I., Schenke, B., Avrutin, V.: Bifurcation structures in a bimodal piecewise linear map: regular dynamics, Internat. J. Bifur. Chaos23, 1330040, 24 pages (2013)

  43. Panchuk, A., Sushko, I., Avrutin, V.: Bifurcation structures in a bimodal piecewise linear map: chaotic dynamics, Internat. J. Bifur. Chaos25, 1530006, 28 pages (2015)

  44. Polynikis, A., di Bernardo, M., Hogan, S.J.: Synchronizability of coupled PWL maps. Chaos Solitons Fractals 41, 1353–1367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Seydel, R.: Practical Bifurcation and Stability Analysis, Third edition, Interdisciplinary Applied Mathematics 5. Springer, New York (2010)

    Book  Google Scholar 

  46. Simpson, D.J.W., Meiss, J.D.: Aspects of bifurcation theory for piecewise-smooth, continuous systems. Physica D 241, 1861–1868 (2012)

    Article  MathSciNet  Google Scholar 

  47. Simpson, D. J. W.: Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form, Internat. J. Bifur. Chaos24, 1430018, 18 pages (2014)

  48. Sushko, I., Agliari, A., Gardini, L.: Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete Contin. Dyn. Syst. Ser. B 5, 881–897 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sushko, I., Agliari, A., Gardini, L.: Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves. Chaos Solitons Fractals 29, 756–770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Thota, P., Dankowicz, H.: Continuous and discontinuous grazing bifurcations in impacting oscillators. Physica D 214, 187–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tigan, G.: Analysis of a two-dimensional nonsmooth Poincaré-like map. Nonlinear Dyn. 75, 643–651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tramontana, F., Gardini, L.: Border collision bifurcations in discontinuous one-dimensional linear-hyperbolic maps. Commun. Nonlinear Sci. Numer. Simul. 16, 1414–1423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tramontana, F., Gardini, L., Avrutin, V., Schanz: Period adding in piecewise linear maps with two discontinuities, Internat. J. Bifur. Chaos22, 1250068, 30 pages (2012)

  54. Zheng, W.-M.: Symbolic dynamics for the gap map. Phys. Rev. A 39, 6608–6610 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdong Du.

Additional information

This work is supported by NSFC (China) under Grant Number 11371264, and Humanities and Social Sciences Foundation of Ministry of Education of China under Grant Number 15YJAZH037.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Du, Z. Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity. Z. Angew. Math. Phys. 68, 12 (2017). https://doi.org/10.1007/s00033-016-0757-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0757-5

Mathematics Subject Classification

Keywords

Navigation