Skip to main content
Log in

Infinitely many solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we consider the differential inclusion problem in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian of the type

$$-\triangle_{p(x)} u+V(x)|u|^{p(x)-2}u\in \partial F(x,u)\,\,\,{\rm {in}} \, \mathbb{R}^N.$$

Some new criteria to guarantee that the existence of infinitely many solutions for the considered problem is established by using the genus properties in nonsmooth critical point theory, which extend and complement previously known results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ricceri B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113, 401–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marano S., Motreanu D.: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the \({p}\)-Laplacian. J. Differ. Equ. 182, 108–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kristály A.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\). J. Differ. Equ. 220, 511–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1993)

    MATH  Google Scholar 

  6. Harjulehto P., Hästö P., Latvala V.: Minimizers of the variable exponent, non-uniformly convex Dirichlet energy.. J. Math. Pures Appl. 89, 174–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y.M., Levine S., Murali R.: Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math. (4) 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antontsev S.N., Rodrigues J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antontsev S.N., Shmarev S.I.: A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions. Nonlinear Anal. Theory Methods Appl. 60, 515–545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ge B.: On the superlinear problems involving the \({p(x)}\)-Laplacian and a non-local term without AR-condition. Nonlinear Anal. Theory Methods Appl. 102, 133–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ge B., Zhou Q.M.: Multiple solutions to a class of inclusion problem with the \({p(x)}\)-Laplacian. Appl. Anal. 91, 895–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge B., Zhou Q.M.: Infinitely many positive solutions for a differential inclusion problem involving the \({p(x)}\)-Laplacian. Math. Nachr. 285, 1303–1315 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Ge B., Xue X.P., Zhou Q.M.: Existence of at least five solutions for a differential inclusion problem involving the \({p(x)}\)-Laplacian. Nonlinear Anal. Real World Appl. 12, 2304–2318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou Q.M.: On the superlinear problems involving \({p(x)}\)-Laplacian-like operators without AR-condition. Nonlinear Anal. Real World Appl. 21, 161–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Perera K., Squassina M.: Asymptotic behavior of the eigenvalues of the \({p(x)}\)-Laplacian. Manuscr. Math. 144, 535–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang S.H., Zhang J.H.: Infinitely many small solutions for the \({p(x)}\)-Laplacian operator with nonlinear boundary conditions. Ann. Mat. Pura Appl. 192, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benouhiba N.: On the eigenvalues of weighted \({p(x)}\)-Laplacian on \({\mathbb{R}^N}\). Nonlinear Anal. 74, 235–243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dai G.W.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian. Nonlinear Anal. Theory Methods Appl. 71, 1116–1123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai G.W.: Three symmetric solutions for a differential inclusion system involving the \({p(x)}\)-Laplacian in \({\mathbb{R}^N}\). Nonlinear Anal. Theory Methods Appl. 71, 1763–1771 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ge B., Xue X.P., Zhou Q.M.: The existence of radial solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian. Nonlinear Anal. Theory Methods Appl. 73, 622–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ge B., Zhou Q.M., Xue X.P.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving \({p(x)}\)-Laplacian and oscillatory terms. Z. Angew. Math. Phys. 64, 691–711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ge B., Zhou Q.M., Xue X.P.: Multiplicity of solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian. Monatshefte Math. 168, 363–380 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Allaoui M., El Amrouss A., Ourraoui A.: Existence results for a class of \({p(x)}\)-Laplacian problems in \({\mathbb{R}^N}\). Comput. Math. Appl. 69, 582–591 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhang Q.Y., Wang Q.: Multiple solutions for a class of sublinear Schröinger equations. J. Math. Anal. Appl. 389, 511–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fan X.L., Han X.Y.: Existence and multiplicity of solutions for \({p(x)}\)-Laplacian equations in \({\mathbb{R}^N}\). Nonlinear Anal. Theory Methods Appl. 59, 173–188 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Edmunds D., Rákosník J.: Sobolev embedding with variable exponent. Studia Math. 143, 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Fan X.L, Jishen S., Zhao D.: Sobolev embedding theorems for spaces \({W^{k,p(x)}(\Omega )}\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kovacik O., Rakosuik J.: On spaces \({L^{p(x)}(\Omega)}\) and \({W^{k,p(x)}(\Omega)}\). Czechoslov. Math. J. 41, 592–618 (1991)

    Google Scholar 

  29. Fan X.L, Zhao D.: On the spaces \({L^{p(x)}(\Omega)}\) and \({W^{m,p(x)}(\Omega)}\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan X.L, Zhang Q.H.: Existence of solutions for \({p(x)}\)-laplacian Dirichlet problem. Nonlinear Anal. Theory Methods Appl. 52, 1843–1853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang K.C.: Critical Point Theory and Applications. Shanghai Scientific and technology Press, Shanghai (1996)

    Google Scholar 

  32. Edmunds D., Rakosnik J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Kandiakis D., Kourogenis N., papageorgiou N.S.: Two Nontrivial Critical Points for Nonsmooth Functionals via Local Linking and Applications. J. Glob. Optim. 34, 219–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence, RI (1986)

  35. Papageorgiou N.S., Kyritsi-Yisllourou S. Th.: Handbook of Applied Analysis. Advance in Mechanics and Mathematics. Springer, New York (2009)

    Google Scholar 

  36. Gasinski L., Papageorgiou N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman Hall and CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ge.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 11201095), the Youth Scholar Backbone Supporting Plan Project of Harbin Engineering University (No. 307201411008), the Fundamental Research Funds for the Central Universities (No. 2016), the Postdoctoral Research Startup Foundation of Heilongjiang (No. LBH-Q14044), the Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province (No. LC201502).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, B., Liu, LL. Infinitely many solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the \({p(x)}\)-Laplacian. Z. Angew. Math. Phys. 67, 8 (2016). https://doi.org/10.1007/s00033-015-0612-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0612-0

Mathematics Subject Classification

Keywords

Navigation