Skip to main content
Log in

Cauchy–de Branges Spaces, Geometry of Their Reproducing Kernels and Multiplication Operators

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

Cauchy–de Branges spaces are Hilbert spaces of entire functions defined in terms of Cauchy transforms of discrete measures on the plane and generalizing the classical de Branges theory. We consider extensions of two important properties of de Branges spaces to this, more general, setting. First, we discuss geometric properties (completeness, Riesz bases) of systems of reproducing kernels corresponding to the zeros of certain entire functions associated to the space. In the case of de Branges spaces they correspond to orthogonal bases of reproducing kernels. The second theme of the paper is a characterization of the density of the domain of multiplication by z in Cauchy–de Branges spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abakumov, E., Baranov, A., Belov, Yu.: Localization of zeros for Cauchy transforms. Int. Math. Res. Notices 15, 6699–6733 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abakumov, E., Baranov, A., Belov, Yu.: Krein-type theorems and ordered structure for Cauchy-de Branges spaces. J. Funct. Anal. 277(1), 200–226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abakumov, E., Baranov, A., Belov, Yu.: Localization of zeros in Cauchy-de Branges spaces, analysis of operators on function spaces, the Serguei Shimorin memorial volume. In: Aleman, A., Hedenmalm, H., Khavinson, D., Putinar, M. (eds.) Trends in Mathematics, pp. 5–27. Birkhäuser, Basel (2019)

    MATH  Google Scholar 

  4. Adduci, J., Mityagin, B.: Root system of a perturbation of a selfadjoint operator with discrete spectrum. Integral Equ. Oper. Theory 73(2), 153–175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baranov, A.D.: Spectral theory of rank one perturbations of normal compact operators. Algebra i Analiz 30(5), 1–56 (2018); English transl. in: St. Petersburg Math. J. 30(5), 761–802 (2019)

  6. Baranov, A.D., Yakubovich, D.V.: One-dimensional perturbations of unbounded selfadjoint operators with empty spectrum. J. Math. Anal. Appl. 424(2), 1404–1424 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baranov, A.D., Yakubovich, D.V.: Completeness and spectral synthesis of nonselfadjoint one-dimensional perturbations of selfadjoint operators. Adv. Math. 302, 740–798 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baranov, A., Belov, Yu., Borichev, A.: Summability properties of Gabor expansions. J. Funct. Anal. 274(9), 2532–2552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belov, Yu., Mengestie, T., Seip, K.: Unitary discrete Hilbert transforms. J. Anal. Math. 112(1), 383–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belov, Yu., Mengestie, T., Seip, K.: Discrete Hilbert transforms on sparse sequences. Proc. Lond. Math. Soc. 103, 73–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clark, D.N.: One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clunie, J., Eremenko, A., Rossi, J.: On equilibrium points of logarithmic and Newtonian potentials. J. Lond. Math. Soc. 47(2), 309–320 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  14. Dobosevych, O., Hryniv, R.: Spectra of rank-one perturbations of self-adjoint operators. Linear Algebra Appl. 609, 339–364 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dobosevych, O., Hryniv, R.: Direct and inverse spectral problems for rank-one perturbations of self-adjoint operators. Integral Equ. Oper. Theory 93(2), (2021). (Paper No. 18)

  16. Eremenko, A., Langley, J., Rossi, J.: On the zeros of meromorphic functions of the form \(f(z)=\sum _{k=1}^\infty a_k/(z-z_k)\). J. Anal. Math. 62, 271–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gohberg, I., Krein, M.: Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. Soc, Providence, R.I. (1969)

    MATH  Google Scholar 

  18. Goldberg, A.A., Ostrovskii, I.V.: Distribution of Values of Meromorphic Functions. Moscow, Nauka (1970); English transl. in: Translations of Mathematical Monographs, vol. 236. AMS, Providence, RI (2008)

  19. Gubreev, G.M., Tarasenko, A.A.: Spectral decomposition of model operators in de Branges spaces. Mat. Sb. 201(11), 41–76 (2010); English transl. in: Sb. Math. 201(11), 1599–1634 (2010)

  20. Ionascu, E.: Rank-one perturbations of diagonal operators. Integral Equ. Oper. Theory 39(4), 421–440 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keldyš, M.V.: On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations. Doklady Akad. Nauk SSSR 77, 11–14 (1951). (in Russian)

  22. Keldyš, M.V.: On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators. Uspekhi Mat. Nauk 26(4), 15–41 (1971); English transl.: Russian Math. Surveys 26(4), 15–44 (1971)

  23. Khabibullin, B.N.: Liouville-type theorems for functions of finite order. Ufa Math. J. 12(4), 114–118 (2020)

    Article  MathSciNet  Google Scholar 

  24. Khabibullin, B.N.: Global boundedness of functions of finite order that are bounded outside small sets. Sbornik Math. 212(11), 1615–1625 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Langley, J.K., Rossi, J.: Meromorphic functions of the form \(f(z)=\sum _{n=1}^\infty a_n/(z-z_n)\). Rev. Mat. Iberoamericana 20(1), 285–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Macaev, V.I.: A class of completely continuous operators. Dokl. Akad. Nauk SSSR 139(3), 548–551 (1961); English transl.: Soviet Math. Dokl. 2, 972–975 (1961)

  27. Martin, R.T.W.: Representation of simple symmetric operators with deficiency indices (1,1) in de Branges space. Complex Anal. Oper. Theory 5(2), 545–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mortini, R., Nicolau, A.: Frostman shifts of inner functions. J. Anal. Math. 92, 285–326 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nicolau, A.: Finite products of interpolating Blaschke products. J. Lond. Math. Soc. 50(3), 520–531 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nicolau, A., Suárez, D.: Paths of inner-related functions. J. Funct. Anal. 262(9), 3749–3774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nikolski, N.: Treatise on the Shift Operator, Grundlehren der mathematischen Wissenschaften, vol. 273. Springer, Berlin (1986)

    Book  Google Scholar 

  32. Romanov, R.: Canonical Systems and de Branges Spaces. Preprint at arXiv:1408.6022

  33. Saksman, E.: An elementary introduction to Clark measures. In: Girela Álvarez, D., González Enríquez, C. (eds.) Topics in Complex Analysis and Operator Theory, pp. 85–136. Univ. Malaga, Malaga (2007)

  34. Shkalikov, A.A.: Perturbations of self-adjoint and normal operators with discrete spectrum. Russian Math. Surv. 71(5), 907–964 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Silva, L.O., Toloza, J.H.: On the spectral characterization of entire operators with deficiency indices (1,1). J. Math. Anal. Appl. 367(2), 360–373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Artur Nicolau for useful discussions concerning Frostman shifts, to Vladimir Shemyakov for the help with numerical experiments and to Antonio Rivera for the discussions of the material of Sect. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Baranov.

Additional information

The results of Sects. 3, 4, 5 and 6 were obtained with the support of the Russian Science Foundation grant 19-71-30002. The results of Sects. 7 and 8 were obtained with the support of Ministry of Science and Higher Education of the Russian Federation, agreement No 075-15-2021-602.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, A. Cauchy–de Branges Spaces, Geometry of Their Reproducing Kernels and Multiplication Operators. Milan J. Math. 91, 97–130 (2023). https://doi.org/10.1007/s00032-023-00378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-023-00378-1

Keywords

Mathematics Subject Classification

Navigation