Skip to main content
Log in

Stable and Historic Behavior in Replicator Equations Generated by Similar-Order Preserving Mappings

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

One could observe drastically different dynamics of zero-sum and non-zero-sum games under replicator equations. In zero-sum games, heteroclinic cycles naturally occur whenever the species of the population supersede each other in cyclic fashion (like for the Rock-Paper-Scissors game). In this case, the highly erratic oscillations may cause the divergence of the time averages. In contrast, it is a common belief that the most “reasonable” replicator equations of non-zero-sum games satisfy “The Folk Theorem of Evolutionary Game Theory” which asserts that (i) a Nash equilibrium is a rest point; (ii) a stable rest point is a Nash equilibrium; (iii) a strictly Nash equilibrium is asymptotically stable; (iv) any interior convergent orbit evolves to a Nash equilibrium. In this paper, we propose two distinct vast classes of replicator equations generated by similar-order preserving mappings which exhibit stable as well as mean historic behavior. In the latter case, the time averages of the orbit will slowly oscillate during the evolution of the system and do not converge to any limit. This will eventually cause the divergence of higher-order repeated time averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Baranski, K., Misiurewicz, M.: Omega-limit sets for the Stein–Ulam spiral map. Top. Proc. 36, 145–172 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Barrientos, P.G., Kiriki, S., Nakano, Y., Raibekas, A., Soma, T.: Historic behavior in nonhyperbolic homoclinic classes. Proc. Am. Math. Soc. 148, 1195–1206 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carvalho, M., Varandas, P.: Genericity of historic behavior for maps and flows. Nonlinearity 34(10), 7030–7044 (2021)

    Article  MathSciNet  Google Scholar 

  4. Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. de Santana, H.L.: Historic behavior for flows with the gluing orbit property. J. Korean Math. Soc. 59(2), 337–352 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Dowker, Y.: The mean and transitive points of homeomorphisms. Ann. Math. 58(1), 123–133 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman, D.: On economic applications of evolutionary game theory. J. Evol. Econ. 8(1), 15–43 (1998)

    Article  Google Scholar 

  8. Ganikhodzhaev, N., Zanin, D.: On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex. Russ. Math. Surv. 59(3), 571–572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaunersdorfer, A.: Time averages for heteroclinic attractors. SIAM J. Math. Anal. 52, 1476–1489 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofbauer, J.: Heteroclinic cycles in ecological differential equations. Tatra Mount. Math. Publ. 4, 105–116 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Hofbauer, J., Sigmund, K.: Evolutionary Dynamics and Extensive Form Games. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40(4), 479–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jamilov, U., Mukhamedov, F.: A class of Lotka-Volterra operators with historical behavior. Results Math. 77(4), 169 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jamilov, U., Mukhamedov, F.: Historical behavior for a class of Lotka–Volterra systems. Math. Methods Appl. Sci. 45(17), 11380–11389 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kiriki, S., Li, M., Soma, T.: Geometric Lorenz flows with historic behavior. Discrete Contin. Dyn. Syst. 36(12), 7021–7028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kiriki, S., Nakano, Y., Soma, T.: Historic behaviour for nonautonomous contraction mappings. Discrete Contin. Dyn. Syst. 32(3), 1111–1124 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Kiriki, S., Nakano, Y., Soma, T.: Emergence via non-existence of averages. Adv. Math. 400, 108254 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiriki, S., Soma, T.: Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. 306, 524–588 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marshall, A., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its Applications. Springer, New York (2011)

    Book  MATH  Google Scholar 

  20. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 287–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruelle, D.: Historic behavior in smooth dynamical systems. In: Broer, H.W., et al. (eds.) Global Analysis of Dynamical Systems (London), pp. 63–66. IOP Publishing, London (2001)

    MATH  Google Scholar 

  22. Saburov, M.: Dichotomy of iterated means for nonlinear operators. Funct. Anal. Its Appl. 52(1), 74–76 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saburov, M.: Nonergodic quadratic stochastic operators. Math. Notes 106(1), 142–145 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saburov, M.: Iterated means dichotomy for discrete dynamical systems. Qual. Theory Dyn. Syst. 19, 25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saburov, M.: The discrete-time Kolmogorov systems with historic behavior. Math. Methods Appl. Sci. 44(1), 813–819 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saburov, M.: On replicator equations with nonlinear payoff functions defined by the Ricker models. Adv. Pure Appl. Math. 12, 139–156 (2021)

    Article  Google Scholar 

  27. Saburov, M.: Uniformly historic behaviour in compact dynamical systems. J. Differ. Equ. Appl. 27(7), 1006–1023 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saburov, M.: On discrete-time replicator equations with nonlinear payoff functions. Dyn. Games Appl. 12(2), 643–661 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  30. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theory Biol. 100(3), 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  31. Sigmund, K.: Time averages for unpredictable orbits of deterministic systems. Ann. Oper. Res. 37, 217–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sigmund, K.: Evolutionary Game Dynamics: American Mathematical Society Short Course. American Mathematical Society, Providence (2010)

    Google Scholar 

  33. Takens, F.: Orbits with historic behavior, or non-existence of averages - Open Problem. Nonlinearity 21(3), 33–36 (2008)

    Article  MathSciNet  Google Scholar 

  34. Taylor, P.D., Jonker, L.: Evolutionarily stable strategies and game dynamics. Math. Biosci. 40(1–2), 145–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thomas, B.: Evolutionary stability: states and strategies. Theor. Popul. Biol. 26(1), 49–67 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thomas, B.: On evolutionarily stable sets. J. Math. Biol. 22, 105–115 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vallander, S.S.: The limiting behavior of the sequences of iterates of certain quadratic transformations. Soviet Math. Dokl. 13, 123–126 (1972)

    MATH  Google Scholar 

  38. Vallander, S.S.: One family of cubic stochastic transformations. OP-PM Surv. Appl. Ind. Math. 14(6), 1074 (2007)

    Google Scholar 

  39. Yang, D.: On the historical behavior of singular hyperbolic attractors. Proc. Am. Math. Soc. 148, 1641–1644 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zakharevich, M.: On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33(6), 265–266 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank to anonymous reviewer for useful comments and suggestions which improved the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Saburov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saburov, M. Stable and Historic Behavior in Replicator Equations Generated by Similar-Order Preserving Mappings. Milan J. Math. 91, 31–46 (2023). https://doi.org/10.1007/s00032-022-00376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-022-00376-9

Keywords

Mathematics Subject Classification

Navigation