Skip to main content
Log in

Euclidean Volume Growth for Complete Riemannian Manifolds

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We provide an overview of technics that lead to an Euclidean upper bound on the volume of geodesic balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, in: Methods of functional analysis and theory of elliptic equations (Naples, 1982), 19–52, Liguori, Naples, 1983

  2. C.-L. Aldana, G. Carron, S. Tapie: \(A_{infty}\) weights and compactness of conformal metrics under \(L^{n/2}\) curvature bounds, arXiv 1810.05387

  3. Aubry, E.: Bounds on the volume entropy and simplicial volume in Ricci curvature \(L^{p}\)-bounded from below. Int. Math. Res. Not. 10, 1933–1946 (2009)

    MATH  Google Scholar 

  4. Bonk, M., Heinonen, J., Saksman, E.: Logarithmic potentials, quasiconformal flows, and Q-curvature. Duke Math. J. 142(2), 197–239 (2008)

    Article  MathSciNet  Google Scholar 

  5. M. Bonk, J. Heinonen, E. Saksman: The quasiconformal Jacobian problem, in: In the tradition of Ahlfors and Bers, III, 77–96, Contemp. Math. 355 (2004), 77–96

  6. Castillon, P.: An inverse spectral problem on surfaces. Comment. Math. Helv. 81(2), 271–286 (2006)

    Article  MathSciNet  Google Scholar 

  7. Carron, G.: Stabilité isopérimétrique. Math. Annalen 306, 323–340 (1996)

    Article  MathSciNet  Google Scholar 

  8. Carron, G.: Riesz transform on manifolds with quadratic curvature decay. Rev. Mat. Iberoam. 33(3), 749–788 (2017)

    Article  MathSciNet  Google Scholar 

  9. G. Carron: Geometric inequalities for manifolds with Ricci curvature in the Kato class, Annales de l'Institut Fourier 69 (2019), no. 7, 3095–3167

  10. Carron, C., Herzlich, M.: The Huber theorem for non-compact conformally flat manifolds. Comment Math. Helv. 77, 192–220 (2002)

    Article  MathSciNet  Google Scholar 

  11. Costea, S.: Strong \(A_{infty}\)-weights and Sobolev capacities in metric measure spaces. Houston J. Math. 35(4), 1233–1249 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Coulhon, T., Holopainen, I., Saloff-Coste, L.: Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems. Geom. Funct. Anal. 11(6), 1139–1191 (2001)

    Article  MathSciNet  Google Scholar 

  13. Coulhon, T.: Off-diagonal heat kernel lower bounds without Poincaré. J. London Math. Soc. 68(3), 795–816 (2003)

    Article  MathSciNet  Google Scholar 

  14. G. David, S. Semmes: Strong \(A_{\infty }\) weights, Sobolev inequalities and quasiconformal mappings, in: Analysis and Partial Differential Equations, Lect. Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 101–111

  15. Davies, E.B., Simon, B.:\(L^{p}\) norms of noncritical Schrödinger semigroups. J. Funct. Anal. 102(1), 95–115 (1991)

    Article  MathSciNet  Google Scholar 

  16. Devyver, B.: Heat kernel and Riesz transform of Schrödinger operators. Annales de l'Institut Fourier 69(2), 457–513 (2019)

    Article  MathSciNet  Google Scholar 

  17. M. do Carmo, C.K. Peng: Stable complete minimal surfaces in \(\mathbb R\it ^{3}\) are planes, Bull. of the AMS 1 (1979), 6 903–906

  18. Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque 157–158, 191–216 (1988)

    MathSciNet  MATH  Google Scholar 

  19. A. Grigor'yan: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), no. 2, 135–249

  20. A. Grigor'yan: Heat kernels on metric measure spaces with regular volume growth, in: Handbook of Geometric Analysis, no. 2 (L. Ji, P. Li, R. Schoen and L. Simon, eds.), Advanced Lectures in Math., vol. 13., International Press/Higher Education Press, 2010, pp 1–60

  21. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  Google Scholar 

  22. Holopainen, I.: A sharp \(L^{q}\)-Liouville theorem for p-harmonic functions. Israel J. Math. 115, 363–379 (2000)

    Article  MathSciNet  Google Scholar 

  23. Holopainen, I.: Volume growth, Green's functions, and parabolicity of ends. Duke Math. J. 97(2), 319–346 (1999)

    Article  MathSciNet  Google Scholar 

  24. Kansanen, O.E., Korte, R.: Strong \(A_{\infty }\)-weights are \(A_{\infty }\)-weights on metric spaces. Revista Matemática Iberoamericana 27(1), 335–354 (2011)

    Article  MathSciNet  Google Scholar 

  25. Li, P., Yau, S.-T.: Curvature and holomorphic mappings of complete Kähler manifolds. Compositio Math. 73, 125–144 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Moss, W.F., Piepenbrink, J.: Positive solutions of elliptic equations. Pac. J. Math. 75, 219–226 (1978)

    Article  Google Scholar 

  27. Petersen, P., Wei, G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7(6), 1031–1045 (1997)

    Article  MathSciNet  Google Scholar 

  28. Schoen, R., Simon, L., Yau, S.-T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134(3–4), 275–288 (1975)

    Article  MathSciNet  Google Scholar 

  29. Semmes, S.: Bilipschitz mappings and strong \(A_{\infty }\) weights. Ann. Acad. Sci. Fenn. Ser. AI Math. 18(2), 211–248 (1993)

    MATH  Google Scholar 

  30. Tian, G., Viaclovsky, J.: Bach-flat asymptotically locally Euclidean metrics. Invent. Math. 160(2), 357–415 (2005)

    Article  MathSciNet  Google Scholar 

  31. Tian, G., Viaclovsky, J.: Moduli spaces of critical Riemannian metrics in dimension four. Adv. Math. 196(2), 346–372 (2005)

    Article  MathSciNet  Google Scholar 

  32. Wang, S., Wang, Y.: Integrability of scalar curvature and normal metric on conformally flat manifolds. J. Differential Equations 265(4), 1353–1370 (2018)

    Article  MathSciNet  Google Scholar 

  33. Wang, Yi: The isoperimetric inequality and quasiconformal maps on manifolds with finite total Q-curvature. Int. Math. Res. Not. 2012(2), 394–422 (2012)

    Article  MathSciNet  Google Scholar 

  34. Wang, Yi: The isoperimetric inequality and Q-curvature. Adv. Math. 281, 823–844 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Carron.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Seminario Matematico e Fisico Lecture, delivered by Gilles Carron on May 14, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carron, G. Euclidean Volume Growth for Complete Riemannian Manifolds. Milan J. Math. 88, 455–478 (2020). https://doi.org/10.1007/s00032-020-00321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-020-00321-8

Keyword

Mathematics Subject Classification (2010)

Navigation