Skip to main content
Log in

On Degenerate Para-CR Structures: Cartan Reduction and Homogeneous Models

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Motivated by recent works in Levi degenerate CR geometry, this article endeavors to study the wider and more flexible para-CR structures for which the constraint of invariancy under complex conjugation is relaxed. We consider 5-dimensional para-CR structures whose Levi forms are of constant rank 1 and that are 2-nondegenerate both with respect to parameters and to variables. Eliminating parameters, such structures may be represented modulo point transformations by pairs of PDEs zy = F(x,y,z,zx) & zxxx = H(x,y,z,zx,zxx), with F independent of zxx and \(F_{z_{x}z_{x}} \neq 0\), that are completely integrable \({D_{x}^{3}} F = {\Delta }_{y} H\), Performing at an advanced level Cartan’s method of equivalence, we determine all concerned homogeneous models, together with their symmetries:

  1. (i)

    \(z_{y} = \tfrac 14 (z_{x})^{2}\quad \&\quad z_{xxx}=0\);

  2. (ii)

    \(z_{y} = \tfrac 14 (z_{x})^{2}\quad \& \quad z_{xxx}=(z_{xx})^{3}\);

  3. (iiia)

    \(z_{y} = \tfrac 14 (z_{x})^{b} \& z_{xxx} = (2-b)\frac {(z_{xx})^{2}}{z_{x}}\) with zx > 0 for any real b ∈ [1,2);

  4. (iiib)

    \(z_{y} = f(z_{x})\quad \& \quad z_{xxx} = h(z_{x})\left (z_{xx}\right )^{2}\), where the function f is determined by the implicit equation:

    $$ \left( {z_{x}^{2}}+f(z_{x})^{2}\right) \exp \left( 2b \text{arctan}\tfrac{bz_{x}-f(z_{x})}{z_{x}+bf(z_{x})} \right) = 1+b^{2} $$

    and where, for any real b > 0:

    $$ h(z_{x}) := \frac{(b^{2}-3)z_{x}-4bf(z_{x})}{\left( f(z_{x})-bz_{x}\right)^{2}}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cartan, É: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I. Ann. Mat. 11, 17–90 (1932). Œuvres Complètes, Partie II 2, 1231–1304

    Article  Google Scholar 

  2. Cartan, É: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes II. Annali Sc. Norm. Sup. Pisa 1, 333–354 (1932). Œuvres Complètes, Partie III, 2, 1217–1238

    MATH  Google Scholar 

  3. Chen, Z., Foo, W. G., Merker, J., Ta, T. A.: Normal forms for rigid \(\mathfrak {C}_{2,1}\) hypersurfaces M5C3. Taiwan. J. Math. 25(2), 333–364 (2021). https://doi.org/10.11650/tjm/200903

    Article  Google Scholar 

  4. Doubrov, B., Komrakov, B., Rabinovich, M.: Homogeneous Surfaces in the Three-Dimensional Affine Geometry. Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995). World Science Publication, River Edge. https://doi.org/10.2969/jmsj/05210199 (1996)

  5. Eastwood, M., Ezhov, V.: On affine normal forms and a classification of homogeneous surfaces in affine three-space. Geom. Dedicata 77(1), 11–69 (1999). https://doi.org/10.1023/A:1005083518793

    Article  MathSciNet  Google Scholar 

  6. Foo, W. G., Merker, J.: Differential {e}-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M5C3. Constr. Math. Anal. 4(3), 318–377 (2021). https://doi.org/10.33205/cma.943426

    MathSciNet  MATH  Google Scholar 

  7. Gaussier, H., Merker, J.: A new example of uniformly Levi degenerate hypersurface in C3. Ark. Mat. 41 (1), 85–94 (2003). https://doi.org/10.1007/s11512-007-0042-0. Erratum: 45(2), 269–271 (2007). https://doi.org/10.1007/s11512-007-0042-0

    Article  MathSciNet  Google Scholar 

  8. Fels, G., Kaup, W.: CR manifolds of dimension 5: a Lie algebra approach. J. Reine Angew. Math. 604, 47–71 (2007). https://doi.org/10.1515/CRELLE.2007.019

    MathSciNet  MATH  Google Scholar 

  9. Fels, G., Kaup, W.: Classification of Levi degenerate homogeneous CR-manifolds in dimension 5. Acta Math. 201, 1–82 (2008). https://doi.org/10.1007/s11511-008-0029-0

    Article  MathSciNet  Google Scholar 

  10. Foo, W. G., Merker, J., Ta, T.-A.: On convergent Poincaré-Moser reduction for Levi degenerate embedded 5-dimensional CR manifolds. New York J. Math. 28, 250–336 (2022). SSN 1076-9803/2022

    MathSciNet  MATH  Google Scholar 

  11. Freeman, M.: Real submanifolds with degenerate Levi form, Several complex variables. Proc. Sympos. Pure Math., Vol. XXX, Williams Coll., Williamstown, Mass., 1975, Part 1, pp 141–147. American Mathematical Society, Providence (1977). https://doi.org/10.1090/pspum/030.1/0457767

    Google Scholar 

  12. Godlinski, M., Nurowski, P.: Geometry of third order ODEs. arXiv:0902.4129/

  13. Hachtroudi, M.: Les espaces d’éléments à connexion projective normale. Actualités Scientifiques et Industrielles. Paris, Hermann, vol. 565 (1937)

  14. Hill, C. D., Nurowski, P.: Differential equations and para-CR structures. Boll. Unione Mat. Ital. (9) III(1), 25–91 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Medori, C., Spiro, A.: The equivalence problem for 5-dimensional Levi degenerate CR manifolds. Int. Math. Res. Not. IMRN 20, 5602–5647 (2014). https://doi.org/10.1093/imrn/rnt129

    Article  MathSciNet  Google Scholar 

  16. Merker, J.: Lie symmetries of partial differential equations and CR geometry. J. Math. Sci. (N.Y.) 154, 817–922 (2008). https://doi.org/10.1007/s10958-008-9201-5

    Article  MathSciNet  Google Scholar 

  17. Merker, J.: Equivalences of PDE systems associated to degenerate para-CR structures: foundational aspects. Partial Differ. Equ. Appl. 3(1), Paper No. 4, 57 pp (2022). https://doi.org/10.1007/s42985-021-00138-z

    Article  MathSciNet  Google Scholar 

  18. Merker, J., Nurowski, P.: New explicit Lorentzian Einstein-Weyl structures in 3-dimensions. SIGMA Symmetry Integrability Geom. Methods Appl. 16, Paper No. 056, 16 pp (2020). https://doi.org/10.3842/SIGMA.2020.056

    MathSciNet  MATH  Google Scholar 

  19. Merker, J., Pocchiola, S.: Explicit absolute parallelism for 2-nondegenerate real hypersurfaces M5C3 of constant Levi rank 1. J. Geom. Anal. 30, 2689–2730 (2020). https://doi.org/10.1007/s12220-018-9988-3. Addendum: 3233–3242

    Article  MathSciNet  Google Scholar 

  20. Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55, 19–49 (2005). https://doi.org/10.1016/j.geomphys.2004.11.006

    Article  MathSciNet  Google Scholar 

  21. Nurowski, P., Sparling, G.: Three-dimensional Cauchy-Riemann structures and second order ordinary differential equations. Class. Quantum Gravity 20(23), 4995–5016 (2003). https://doi.org/10.1088/0264-9381/20/23/004

    Article  MathSciNet  Google Scholar 

  22. Nurowski, P., Tafel, J.: Symmetries of Cauchy-Riemann spaces. Lett. Math. Phys. 15, 31–38 (1988). https://doi.org/10.1007/BF00416569

    Article  MathSciNet  Google Scholar 

  23. Porter, C.: The local equivalence problem for 7-dimensional 2-nondegenerate CR manifolds whose cubic form is of conformal type. Comm. Anal. Geom. 27(7), 1583–1638 (2019). https://doi.org/10.4310/CAG.2019.v27.n7.a5

    Article  MathSciNet  Google Scholar 

  24. Porter, C., Zelenko, I.: Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation. J. Reine Angew. Math. 777, 195–250 (2021). https://doi.org/10.1515/crelle-2021-0012

    Article  MathSciNet  Google Scholar 

  25. Segre, B.: Intorno al problema di Poincaré della rappresentazione pseudoconforme. Rend. Acc. Lincei, VI Ser. 13, 676–683 (1931)

    MATH  Google Scholar 

Download references

Acknowledgements

This work would not have been realized without the generous support of the Polish National Science Center. Hoping to benefit from renewed excellent working conditions, the authors would also like to thank the Center for Theoretical Physics of the Polish Academy of Sciences in Warsaw and the Institut de Mathématique d’Orsay in Paris.

Funding

This work was supported in part by the Polish National Science Centre (NCN) via the grant number 2018/29/B/ST1/02583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merker, J., Nurowski, P. On Degenerate Para-CR Structures: Cartan Reduction and Homogeneous Models. Transformation Groups (2022). https://doi.org/10.1007/s00031-022-09746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-022-09746-4

Mathematics Subject Classification (2010)

Navigation