Skip to main content
Log in

Algebraic Groups Whose Orbit Closures Contain Only Finitely Many Orbits

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We explore connected affine algebraic groups G, which enjoy the following finiteness property (F): for every algebraic action of G, the closure of every G-orbit contains only finitely many G-orbits. We obtain two main results. First, we classify such groups. Namely, we prove that a connected affine algebraic group G enjoys property (F) if and only if G is either a torus or a product of a torus and a one-dimensional connected unipotent algebraic group. Secondly, we obtain a characterization of such groups in terms of the modality of action in the sense of V. Arnol’d. Namely, we prove that a connected affine algebraic group G enjoys property (F) if and only if for every irreducible algebraic variety X endowed with an algebraic action of G, the modality of X is equal to dim X − maxxϵX dim Gx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Д. Н. Ахиезер, О действиях с конечным числом орбит, Функц. анализ и его прил. 19 (1985), вып. 1, 1–5. Engl. transl.: D. N. Akhiezer, Actions with a finite number of orbits, Funct. Analysis Appl. 19 (1985), no. 1, 1–4.

  2. V. I. Arnold, Critical points of smooth functions, in: Proceedings of the International Congress of Mathematicians, Vol. 1 (Vancouver, BC, 1974), Canad. Math. Congress, Montreal, Que., 1975, pp. 19–39.

  3. A. Borel, Linear Algebraic Groups, 2nd enlarged edn., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

  4. M. Demazure, P. Gabriel, Groupes Algébriques, Masson & Cie, Paris, North-Holland, Amsterdam, 1970.

  5. A. Di Bartolo, G. Falcone, P. Plaumann, K. Strambach, Algebraic Groups and Lie Groups with Few Factors, Lecture Notes in Mathematics, Vol. 1944, Springer-Verlag, Berlin, 2008.

  6. W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.

  7. A. Grothendieck, Torsion homologique et sections rationneles, in: Séminaire Claude Chevalley 3 (1958), exp. no. 5, Secrétariat mathem. Paris, 1958, pp. 1–29.

  8. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973.

  9. D. Luna, Th. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.

    Article  MathSciNet  Google Scholar 

  10. V. L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, arXiv:1707.069v1 (2017).

  11. V. L. Popov, Modality of representations, and packets for θ-groups, in: Lie Groups, Geometry, and Representation Theory. A Tribute to the Life and Work of Bertram Kostant, Progress in Mathematics, Vol. 326, Birkhäuser Basel, Basel, 2018, pp. 459–579.

  12. В. Л. Попов, Замыкание орбит действий групп Витта, Труды МИАН 307 (2019), 212–216. Engl. transl.: V. L. Popov, Orbit closures of the Witt group actions, Proc. Steklov Inst. Math. 307 (2019), 193–197.

  13. Э. Б. Винберг, В. Л. Попов, Теория инвариантов, Итоги науки и техн., Соврем. пробл. матем., Фундам. направл., т. 55, Алгебраическая геометрия–4, ВИНИТИ, М., 1989, стр. 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant Theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.

  14. M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces Trans. Amer. Math. Soc. 101 (1961), no. 2, 211–223.

    Article  MathSciNet  Google Scholar 

  15. J.-P. Serre, Faisceaux algébriques coh_erents, Ann. Math. 61 (1955), 197–278.

    Article  MathSciNet  Google Scholar 

  16. J.-P. Serre, Espaces fibrés algébriques, in: Anneaux de Chow et Applications, Séminaire Claude Chevalley, Vol. 3, Exp. no. 1 (Secrétariat math_ematique, Paris, 1958), pp. 1–37.

  17. C. S. Seshadri, Some results on the quotient space by algebraic group of automorphisms, Math. Annalen 149 (1963), 286–301.

    Article  MathSciNet  Google Scholar 

  18. T. A. Springer, Linear Algebraic Groups. Second Edition, Progress in Mathematics, Vol. 9, Birkhäuser, Boston, 1998.

  19. H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. (JMKYAZ) 14–1 (1974), 1–28.

  20. D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encyclopaedia of Mathematical Sciences, Vol. 138, Subseries Invariant Theory and Algebraic Transformation Spaces, Vol. VIII, Springer, Heidelberg, 2011.

  21. Э. Б. Винберг, Сложность действий редуктивных групп, Функц. анализ и его прил. 20 (1986), вып. 1, 1-13. Engl. transl.: É. B. Vinberg, Complexity of action of reductive groups, Funct. Analysis Appl. 20 1986, no. 1, 1–11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VLADIMIR L. POPOV.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To the memory of E. B. Vinberg

This work was done under a grant from the Russian Science Foundation (project no. 19-11-00237).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

POPOV, V.L. Algebraic Groups Whose Orbit Closures Contain Only Finitely Many Orbits. Transformation Groups 26, 671–689 (2021). https://doi.org/10.1007/s00031-020-09633-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09633-w

Navigation