Skip to main content
Log in

EFFECTIVE DIVISORS ON BOTT–SAMELSON VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We compute the cone of effective divisors on a Bott–Samelson variety corresponding to an arbitrary sequence of simple roots. The main tool is a general result concerning effective cones of certain B-equivariant ℙ1 bundles. As an application, we compute the cone of effective codimension-two cycles on Bott–Samelson varieties corresponding to reduced words. We also obtain an auxiliary result giving criteria for a Bott–Samelson variety to contain a dense B-orbit, and we construct desingularizations of intersections of Schubert varieties. An appendix exhibits an explicit divisor showing that any Bott–Samelson variety is log Fano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anderson, A. Stapledon, Schubert varieties are log Fano over the integers, Proc. Amer. Math. Soc. 142 (2014), no. 2, 409–411.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Balan, Standard monomial theory for desingularized Richardson varieties in the flag variety GL(n)/B, Transform. Groups 18 (2013), no. 2, 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Brion, Variétés sphériques et théorie de Mori, Duke Math. J. 72 (1993), no. 2, 369–404.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Debarre, L. Ein, R. Lazarsfeld, C. Voisin, Pseudoeffective and nef classes on abelian varieties, Compos. Math. 147 (2011), no. 6, 1793–1818.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179–186.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Escobar, Brick manifolds and toric varieties of brick polytopes, Electron. J. Combin. 23 (2016), no. 2, Paper 2.25, 18 pp.

  9. M. Fulger, B. Lehmann, Positive cones of dual cycle classes, Algebr. Geom. 4 (2017), no. 1, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Fulton, R. MacPherson, F. Sottile, B. Sturmfels, Intersection theory on spherical varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193.

    MathSciNet  MATH  Google Scholar 

  11. J. González, Projectivized rank two toric vector bundles are Mori dream spaces, Comm. Algebra 40 (2012), 1456–1465.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. González, M. Hering, S. Payne, H. Süß, Cox rings and pseudoeffective cones of projectivized toric vector bundles, Algebra & Number Theory 6 (2012), no. 5, 995–1017.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  14. J. Hausen, H. Süß, The Cox ring of an algebraic variety with torus action, Adv. Math. 225 (2010), no. 2, 977–1012.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Knop, Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z. 213 (1993), no. 1, 33–36.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, pp. 63–75.

  17. S. Kovács, Singularities of stable varieties, in: Handbook of Moduli, Vol. II, Adv. Lect. Math. (ALM), Vol. 25, Int. Press, Somerville, MA, 2013, pp. 159–203.

  18. S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Birkhäuser, Boston, MA, 2002.

    Book  MATH  Google Scholar 

  19. N. Lauritzen, J. F. Thomsen, Line bundles on Bott–Samelson varieties, J. Algebraic Geom. 13 (2004), 461–473.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Magyar, Schubert polynomials and Bott–Samelson varieties, Comment. Math. Helv. 73 (1998), no. 4, 603–636.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. 122 (1985), no. 1, 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. C. Ottem, Nef cycles on some hyperkähler fourfolds, arXiv:1505.01477 (2015).

  23. H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Willems, K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux, Duke Math. J. 132 (2006), no. 2, 271–309.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAVE ANDERSON.

Additional information

The author was partially supported by NSF Grants DMS-0902967 and DMS-1502201, as well as a postdoctoral fellowship from the Instituto Nacional de Matemática Pura e Aplicada (IMPA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ANDERSON, D. EFFECTIVE DIVISORS ON BOTT–SAMELSON VARIETIES. Transformation Groups 24, 691–711 (2019). https://doi.org/10.1007/s00031-018-9493-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9493-6

Navigation