Skip to main content
Log in

ANNIHILATORS OF HIGHEST WEIGHT \( \mathfrak{s}\mathfrak{l} \)(∞)-MODULES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a criterion for the annihilator in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) of a simple highest weight \( \mathfrak{s}\mathfrak{l} \)(∞)-module to be nonzero. As a consequence we show that, in contrast with the case of \( \mathfrak{s}\mathfrak{l} \)(n), the annihilator in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) of any simple highest weight \( \mathfrak{s}\mathfrak{l} \)(∞)-module is integrable, i.e., coincides with the annihilator of an integrable \( \mathfrak{s}\mathfrak{l} \)(∞)-module. Furthermore, we define the class of ideal Borel subalgebras of \( \mathfrak{s}\mathfrak{l} \)(∞), and prove that any prime integrable ideal in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) is the annihilator of a simple \( \mathfrak{b} \) 0-highest weight module, where \( \mathfrak{b} \) 0 is any fixed ideal Borel subalgebra of \( \mathfrak{s}\mathfrak{l} \)(∞). This latter result is an analogue of the celebrated Duoflo Theorem for primitive ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Baranov, Complex finitary simple Lie algebras, Arch. Math. 71 (1998), 1-6.

    Article  MathSciNet  Google Scholar 

  2. A. A. Baranov, Finitary simple Lie algebras, Journ. of Algebra 219 (1999), 299-329.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Dan-Cohen, I. Penkov, V. Serganova, A Koszul category of representations of finitary Lie algebras, Adv. Math. 289 (2016), 250-278.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Dan-Cohen, I. Penkov, N. Snyder, Cartan subalgebras of root-reductive Lie algebras, J. Algebra 308 (2007), 583-611.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Dimitrov, I. Penkov, Weight modules of direct limit Lie algebras, IMRN 199 (1999), no. 5, 223-249.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Dimitrov, I. Penkov, Locally semisimple and maximal subalgebras of the finitary Lie algebras \( \mathfrak{g}\mathfrak{l} \)(∞); \( \mathfrak{s}\mathfrak{l} \)(∞); \( \mathfrak{s}\mathfrak{v} \)(∞), and \( \mathfrak{s}\mathfrak{p} \)(∞), J. Algebra 322 (2009), 2069-2081.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Dixmier, Algébres Enveloppantes, Gauthier-Villars, Paris, 1974. Russian transl.: Ж. Диксмье, Универсальные обёртыеaющuе алгебры, Мир, М., 1978.

  8. A. Joseph, Sur la classification des idéaux primitifs dans l’algébre enveloppante de sl(n + 1, C), C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 5, 303-306.

    MATH  Google Scholar 

  9. A. Joseph, Dixmier’s problem for Verma and principal series submodules, J. London Math. Soc. (2) 20 (1979), 193-204.

  10. A. Joseph, Towards the Jantzen conjecture. III, Compos. Math. 42 (1980/81), 23-30.

  11. A. Joseph, On the associated variety of the primitive ideal, J. Algebra 88 (1984), 238-278.

    Article  MathSciNet  Google Scholar 

  12. D. E. Knuth, The Art of Computer Programming. Vol. 3. Sorting and Searching, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley, 1973.

  13. I. Penkov, V. Serganova, Tensor representations of Mackey Lie algebras and their dense subalgebras, in: Developments and Retrospectives in Lie Theory: Algebraic Methods, Developments in Mathematics, Vol. 38, Springer, Cham, 2014, pp. 291-330.

  14. I. Penkov, A. Petukhov, On ideals in the enveloping algebra of a locally simple Lie algebra, IMRN 13 (2015), 5196-5228.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Sava, Annihilators of Simple Tensor Modules, Master's thesis, Jacobs University Bremen, 2012, arXiv:1201.3829.

  16. А. Г. Жильинский, Когерентные системы представлений индуктивных семейств простых комплексных алгебр Ли, препринт ИM AH БCCP (1990), no. 38(438), 1990. [A. G. Zhilinskii, Coherent systems of representations of inductive families of simple complex Lie algebras, preprint IM Acad. Sci. Belarus. SSR (1990), no. 38(438) (Russian)].

  17. А. Г. Жильинский, Когерентные системы конечного типа индуктивных семейств недиагональных включений,, ДAH Беларуси 36 (1992), no. 1, 9-13. [A. G. Zhilinskii, Coherent finite-type systems of inductive families of non-diagonal inclusions, Dokl. Acad. Nauk Belarusi 36 (1992), no. 1, 9-13 (Russian)].

  18. A. G. Zhilinskii, On the lattice of ideals in the universal enveloping algebra of a diagonal Lie algebra, preprint, Minsk, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IVAN PENKOV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PENKOV, I., PETUKHOV, A. ANNIHILATORS OF HIGHEST WEIGHT \( \mathfrak{s}\mathfrak{l} \)(∞)-MODULES. Transformation Groups 21, 821–849 (2016). https://doi.org/10.1007/s00031-016-9369-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9369-6

Keywords

Navigation