Skip to main content
Log in

ANTI-HOLOMORPHIC INVOLUTIONS AND SPHERICAL SUBGROUPS OF REDUCTIVE GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study the action of an anti-holomorphic involution σ of a connected reductive complex algebraic group G on the set of spherical subgroups of G. The results are applied to σ-equivariant real structures on spherical homogeneous G-spaces admitting a wonderful embedding. Using combinatorial invariants of these varieties, we give an existence and uniqueness criterion for such real structures. We also investigate the associated real parts of the wonderful varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Akhiezer, Real forms of complex reductive groups acting on quasiaffine varieties, in: Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 213, Providence, RI, 2005, pp. 1-13.

  2. D. N. Akhiezer, Satake diagrams and real structures on spherical varieties, arXiv:1403.0698.

  3. D. N. Akhiezer, S. Cupit-Foutou, On the canonical real structure on wonderful varieties, J. Reine Angew. Math. 693 (2014), 231-244.

    MATH  MathSciNet  Google Scholar 

  4. P. Bravi, S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier, Grenoble 560 (2010), no. 2, 641-681.

    Article  MathSciNet  Google Scholar 

  5. P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra 329 (2011), 4-51.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Bravi, G. Pezzini, Wonderful subgroups of reductive groups and spherical systems, J. Algebra 409 (2014), 101-147.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Brion, Groupe de Picard et nombres caractristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397-424.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Brion, Sur la géométrie des variétés sphériques, Comment. Math. Helvetici 66 (1991), 237-262.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), 61-99.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Brion, D. Luna, T. Vust, Espaces homogénes sphériques, Invent. Math 84 (1986), 617-632.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Cupit-Foutou, Wonderful varieties: A geometrical realization, arXiv:0907. 2852.

  12. D. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503-524.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Huruguen, Toric varieties and spherical embeddings over an arbitrary field, J. Algebra 342 (2011), 212-234.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153-174.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315-343.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249-258.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Luna, T. Vust, Plongements d'espaces homogénes, Comment. Math. Helv. 58 (1983), 186-245.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. L. Onishchik, Lectures on Real Semisimple Lie Algebras and Their Representations, ESI Lectures in Mathematics and Physics, EMS, 2004.

  20. G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007) no. 4, 793-812.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encyclopaedia of Mathematical Sciences, Vol. 138, Subseries Invariant Theory and Algebraic Transformation Groups, Springer, Heidelberg, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to STÉPHANIE CUPIT-FOUTOU.

Additional information

This research was funded by the SFB/TR 12 of the German Research Foundation (DFG) and partially by the DFG priority program SPP 1388-Darstellungstheorie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CUPIT-FOUTOU, S. ANTI-HOLOMORPHIC INVOLUTIONS AND SPHERICAL SUBGROUPS OF REDUCTIVE GROUPS. Transformation Groups 20, 969–984 (2015). https://doi.org/10.1007/s00031-015-9334-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9334-9

Keywords

Navigation