Skip to main content
Log in

INVARIANT THEORY OF FINITE GROUP ACTIONS ON DOWN-UP ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study Artin-Schelter Gorenstein fixed subrings of some Artin-Schelter regular algebras of dimension 2 and 3 under a finite group action and prove a noncommutative version of the Kac-Watanabe and Gordeev theorem for these algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benkart, T. Roby, Down-up algebras, J. Algebra 209 (1998), 305–344. Addendum, J. Algebra 213 (1999), no. 1, 378.

  2. G. Benkart, S. Witherspoon, A Hopf structure for down-up algebras, Math. Z. 238 (2001), no. 3, 523–553.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.-E. Björk, The Auslander condition on Noetherian rings, in: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Mathematics, Vol. 1404, Springer, Berlin, 1989, pp. 137–173.

  4. H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, N. J., 1956. Russian transl.: A. Картан, С. Эйленберг, Гомо-логическая алгебра, ИЛ, M., 1960.

  5. K. Chan, E. Kirkman, C. Walton, J. J. Zhang, Quantum binary polyhedral groups and their actions on quantum planes, to appear in Journal für die reine und angewandte Mathematik (Crelle’s Journal), arXiv:1303.7203.

  6. Y. Félix, S. Halperin, J.-C. Thomas, Elliptic Hopf algebras, J. London Math. Soc. (2) 43 (1991), no. 3, 545–555.

  7. Н. Л. Гордеев, Инварианты линейных групп, порождённых матрицами с дмумя неединичными собственными значениями, Зап. научн. сем. ленингр. отд. мат. инст. им. В. А. Стеклова (ЛОМИ) 114 (1982), 120–130. Engl. transl.: N. L. Gordeev, Invariants of linear groups generated by matrices with two nonidentity eigenvalues, J. Soviet Math. 27 (1984), no. 4, 2919–2927.

  8. Н. Л. Гордеев, Конечные линейные группы, алгебра инвариантов кото-рыхполное пересечение, Изв. Акад. Наук СССР, сер. мат. 50 (1986), no. 2, 343–392. Engl. transl.: N. L. Gordeev, Finite linear groups whose algebra of invariants is a complete intersection, Math. USSR-Inv. 28 (1987), no. 2, 335–379.

  9. N. L. Gordeev, The Hilbert-Poincaré series for some algebras of invariants of cyclic groups, J. Math. Sciences 116 (2003), no. 1, 2961–2971.

    Article  MathSciNet  Google Scholar 

  10. T. H. Gulliksen, A homological characterization of local complete intersections, Compositio Math. 23 (1971), 251–255.

    MATH  MathSciNet  Google Scholar 

  11. N. Jing, J. J. Zhang, On the trace of graded automorphisms, J. Algebra 189 (1997), no. 2, 353–376.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Jørgensen, J. J. Zhang, Gourmet’s guide to Gorensteinness, Adv. Math. 151 (2000), no. 2, 313–345.

    Article  MathSciNet  Google Scholar 

  13. V. Kac, K. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 221–223.

  14. E. Kirkman, J. Kuzmanovich, Fixed subrings of Noetherian graded regular rings, J. Algebra 288 (2005), no. 2, 463–484.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Kirkman, J. Kuzmanovich, J. J. Zhang, Rigidity of graded regular algebras, Trans. Amer. Math. Soc. 360 (2008), 6331–6369.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Kirkman, J. Kuzmanovich, J. J. Zhang, Gorenstein subrings of invariants under Hopf algebra actions, J. Algebra 322 (2009), no. 10, 3640–3669.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Kirkman, J. Kuzmanovich, J. J. Zhang, Shephard-Todd-Chevalley theorem for skew polynomial rings, Algebr. Represent. Theory 13 (2010) no. 2, 127–158.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Kirkman, J. Kuzmanovich, J. J. Zhang, Noncommutative complete intersection, preprint, 2013, arXiv 1302.6209.

  19. E. Kirkman, J. Kuzmanovich, J. J. Zhang, Invariants of (-1)-skew polynomial rings under permutation representation, preprint arXiv 1305.3973, to appear in Proceedings of the AMS Special Sessions on Geometric and Algebraic Aspects of Representation Theory and Quantum Groups and Noncommutative Algebraic Geometry, Tulane University, October 13–14, 2012.

  20. E. Kirkman, I. Musson, D. Passman, Noetherian down-up algebras, Proc. Amer. Math. Soc. 127 (1999), 3161–3167.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann. 9 (1875), no. 2, 183–208.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhauser Verlag, Basel, 1993. Reprint of the 1884 original, edited, with an introduction and commentary by Peter Slodowy.

  23. G. Krause, T. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, revised ed., Graduate Studies in Mathematics, Vol. 22, American Mathematical Society, Providence, RI, 2000.

  24. T. Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992), no. 3, 277–300.

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Li, F. van Oystaeyen, Zariskian Filtrations, K-Monographs in Mathematics 2, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  26. G. J. Leuschke, R. Wiegand, Cohen-Macaulay Representations, Mathematical Surveys and Monographs, Vol. 181, American Mathematical Society, Providence, RI, 2012.

    Book  Google Scholar 

  27. J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123–146.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.

    MATH  Google Scholar 

  29. J. Mcleary, A User’s Guide to Spectral Sequences, 2nd ed., Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  30. H. Nakajima, Quotient singularities which are complete intersections, Manuscr. Math. 48 (1984), no. 1–3, 163–187.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89–92.

    Article  Google Scholar 

  32. R. P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57–83.

    Article  MATH  Google Scholar 

  33. R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. AMS 1 (1979), 475–511.

    Article  MATH  Google Scholar 

  34. M. Suzuki, Group Theory. I, Grundlehren der Mathematischen Wissenschaften Bd. 247, Springer-Verlag, Berlin, 1982.

  35. K. Watanabe, D. Rotillon, Invariant subrings of ℂ[x, y, z] which are complete intersections, Manuscr. Math. 39 (1982), 339–357.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. Watanabe, Invariant subrings which are complete intersections I, (Invariant subrings of finite abelian groups), Nagoya Math. J. 77 (1980), 89–98.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. ZHANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KIRKMAN, E., KUZMANOVICH, J. & ZHANG, J.J. INVARIANT THEORY OF FINITE GROUP ACTIONS ON DOWN-UP ALGEBRAS. Transformation Groups 20, 113–165 (2015). https://doi.org/10.1007/s00031-014-9279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9279-4

Keywords

Navigation