Skip to main content
Log in

The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we derive suitable optimal \(L^p-L^q\) decay estimates, \(1\le p\le 2\le q\le \infty \), for the solutions to the \(\sigma \)-evolution equation, \(\sigma >1\), with scale-invariant time-dependent damping and power nonlinearity \(|u|^p\),

$$\begin{aligned} u_{tt}+(-\Delta )^\sigma u + \frac{\mu }{1+t} u_t= |u|^{p}, \quad t\ge 0, \quad x\in {{\mathbb {R}}}^n, \end{aligned}$$

where \(\mu >0\),  \(p>1\). The critical exponent \(p=p_c\) for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly \(\mu \in (0, 1)\) or \(\mu >1\). Under the assumption of small initial data in \(L^m({{\mathbb {R}}}^n)\cap L^2({{\mathbb {R}}}^n), m=1,2\), we find the critical exponent at low space dimension n with respect to \(\sigma \), namely,

$$\begin{aligned} p_c= \max \left\{ {{\bar{p}}}(\gamma _{m}), {{\bar{p}}} (\gamma _{m}+\mu -1) \right\} , \quad \gamma _{m}{\mathrm {\,:=\,}}\frac{n}{m\sigma }, \quad \mu >1-\gamma _m, \end{aligned}$$

where \( {{\bar{p}}}(\gamma ){\mathrm {\,:=\,}}1+ \frac{2}{\gamma }\) is the well known Fujita exponent. Hence, \(p_c={{\bar{p}}}(\gamma _{m})\) if \(\mu >1\), whereas \(p_c={{\bar{p}}} (\gamma _{m}+\mu -1)\) is a shift of Fujita type exponent if \(\mu \in (0, 1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, H., Erdérlyi, A.: Higher Transcendental Functions, vol. II. MacGraw-Hill Book Company Inc, New York (1953)

    Google Scholar 

  2. D’Abbicco, M., Ebert, M.R.: The critical exponent for semilinear-evolution equations with a strong non-effective damping. Nonlinear Anal. 215, 112637 (2022). https://doi.org/10.1016/j.na.2021.112637

    Article  MathSciNet  Google Scholar 

  3. D’Abbicco, M.: The threshold of effective damping for semilinear wave equation. Math. Methods Appl. Sci. 38, 1032–1045 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. D’Abbicco, M.: The semilinear Euler–Poisson–Darboux equation: a case of wave with critical dissipation. Analysis of PDEs (2020)

  5. D’Abbicco, M.: Small data solutions for the Euler–Poisson–Darboux equation with a power nonlinearity. J. Differ. Equ. 286, 531–556 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. D’Abbicco, M., Fujiwara, K.: A test function method for evolution equations with fractional powers of the Laplace operator. Nonlinear Anal. (2021). https://doi.org/10.1016/j.na.2020.112114

    Article  MathSciNet  Google Scholar 

  7. D’Abbicco, M., Lucente, S.: A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13, 867–892 (2013)

    Article  MathSciNet  Google Scholar 

  8. D’Abbicco, M., Lucente, S., Reissig, M.: A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J. Differ. Equ. 259, 5040–5073 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. D’Abbicco, M., Lucente, S., Reissig, M.: Semi-linear wave equations with effective damping. Chin. Ann. Math. Ser. B 34, 345–380 (2013)

    Article  MathSciNet  Google Scholar 

  10. do Nascimento, W.N., Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. Math. Nachr. 290, 1779–1805 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ebert, M.R., Girardi, G., Reissig, M.: Critical regularity of nonlinearities in semilinear classical damped wave equations. Math. Ann. 378, 1311–1326 (2020). https://doi.org/10.1007/s00208-019-01921-5

    Article  MathSciNet  Google Scholar 

  12. Ebert, M.R., Lourenço, L.M.: The critical exponent for evolution models with power non-linearity. In: Trends in Mathematics, New Tools for Nonlinear PDEs and Applications, pp. 153–177. Birkhäuser, Basel (2019)

  13. Ebert, M.R., Reissig, M.: Methods for Partial Differential Equations, Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models. Springer, Cham (2018)

    Google Scholar 

  14. Fujita, H.: On the blowing up of solutions of the Cauchy Problem for \(u_t=\triangle u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo 13, 109–124 (1966)

    Google Scholar 

  15. Glassey, R.T.: Finite-time blow-up for solutions of nonlinear wave equations. Math. Z. 177(3), 323–340 (1981)

    Article  MathSciNet  Google Scholar 

  16. Glassey, R.T.: Existence in the large for \(\Box u=F(u)\) in two space dimensions. Math. Z. 178(2), 233–261 (1981)

    Article  MathSciNet  Google Scholar 

  17. Georgiev, V., Lindblad, H., Sogge, C.D.: Weighted Strichartz estimates and global existence for semilinear wave equations. Am. J. Math. 119, 1291–1319 (1997)

    Article  MathSciNet  Google Scholar 

  18. Ikeda, M., Sobajima, M.: Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math. Ann. 372, 1017–1040 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ikehata, R., Mayaoka, Y., Nakatake, T.: Decay estimates of solutions for dissipative wave equations in \({\mathbb{R} }^N\) with lower power nonlinearities. J. Math. Soc. Jpn. 56, 365–373 (2004)

    Article  Google Scholar 

  20. John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 28(1–3), 235–268 (1979)

    Article  MathSciNet  Google Scholar 

  21. Kato, T.: Blow-up of solutions of some nonlinear hyperbolic equations. Commun. Pure Appl. Math. 33(4), 501–505 (1980)

    Article  MathSciNet  Google Scholar 

  22. Kubo, H.: Slowly decaying solutions for semilinear wave equations in odd space dimensions. Nonlinear Anal. 28, 327–357 (1997)

    Article  MathSciNet  Google Scholar 

  23. Lindblad, H., Sogge, C.: Long-time existence for small amplitude semilinear wave equations. Am. J. Math. 118(5), 1047–1135 (1996)

    Article  MathSciNet  Google Scholar 

  24. Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res. Inst. Math. Sci. 12, 169–189 (1976)

    Article  MathSciNet  Google Scholar 

  25. Marcati, P., Nishihara, K.: The \(L^p\)-\(L^q\) estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media. J. Differ. Equ. 191, 445–469 (2003)

    Article  ADS  Google Scholar 

  26. Narazaki, T.: \(L^p-L^q\) estimates for damped wave equations and their applications to semilinear problem. J. Math. Soc. Jpn. 56, 586–626 (2004)

    Article  Google Scholar 

  27. Nishihara, K.: \(L^p-L^q\) estimates for solutions to the damped wave equations in 3-dimensional space and their applications. Math. Z. 244, 631–649 (2003)

    Article  MathSciNet  Google Scholar 

  28. Palmieri, A.: Linear and non-linear sigma-evolution equations. Master Thesis, University of Bari, 117p (2015)

  29. Palmieri, A.: Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces. J. Math. Anal. Appl. 461, 1215–1240 (2018)

    Article  MathSciNet  Google Scholar 

  30. Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. Math. Nachr. 291, 1859–1892 (2018)

    Article  MathSciNet  Google Scholar 

  31. Palmieri, A., Reissig, M.: A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J. Differ. Equ. 266, 1176–1220 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sideris, T.C.: Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differ Equ. 52(3), 378–406 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Strauss, W.A.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41(1), 110–133 (1981)

    Article  MathSciNet  Google Scholar 

  34. Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wakasugi, Y.: Critical exponent for the semilinear wave equation with scale invariant damping. In: Ruzhansky, M., Turunen, V. (eds.) Fourier Analysis. Trends Mathematics, pp. 375–390. Springer, Basel (2014)

    Chapter  Google Scholar 

  36. Wirth, J.: Solution representations for a wave equation with weak dissipation. Math. Methods Appl. Sci. 27, 101–124 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wirth, J.: Wave equations with time-dependent dissipation II. Effective dissipation. J. Differ. Equ. 232, 74–103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Yang, H., Milani, A.: On the diffusion phenomenon of quasilinear hyperbolic waves. Bull. Sci. Math. 124, 415–433 (2000)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Q.S.: A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Sér. I, Math. 333, 109–114 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)” Grant No. 2020/08276-9 and “onselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” Grant No. 304408/2020-4. The second author is partially supported by the Centre for Business and Economics Research (CeBER) through the Portuguese Foundation for Science and Technology (FCT), Grant No. UIDB/05037/2020”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Rempel Ebert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we include notations and properties of special functions used throughout the paper.

Notation 1

By \([x]_+\) we denote the non-negative part of \(x\in {{\mathbb {R}}}\), i.e. \([x]_+=\max \{x,0\}\).

Notation 2

We write \( f\lesssim g\) if there exists a constant \(C>0\) such that \(f\le C g\), and \(f\approx g\) if \(g\lesssim f \lesssim g \).

Notation 3

We denote by \({{\hat{f}}}={\mathfrak {F}} f\) or \({{\hat{f}}}(t,\cdot )={\mathfrak {F}} f(t,\cdot )\) the partial Fourier transform, with respect to the space variable x, of a tempered distribution \(\mathcal {S^{\prime }}({\mathbb {R}}^n)\) or of a function, in the appropriate distributional or functional sense and its inverse transform by \({\mathfrak {F}}^{-1}\).

Notation 4

By \(L^p=L^p({{\mathbb {R}}}^n)\), \(p\in [1,\infty ]\), we denote the space of measurable functions f such that \(|f|^p\) has finite integral over \({{\mathbb {R}}}^n\), if \(p\in [1,\infty )\), or has finite essential supremum over \({{\mathbb {R}}}^n\) if \(p=\infty \). We denote by \(W^{m,p}\), \(m\in {{\mathbb {N}}}\), the space of \(L^p\) functions with weak derivatives up to the m-th order in \(L^p\). We denote by \({H}^s({{\mathbb {R}}}^n)\) and \({\dot{H}}^s({{\mathbb {R}}}^n)\), \(s\ge 0\), the spaces of tempered distributions \(\mathcal {S^{\prime }}({\mathbb {R}}^n)\) with \((1+{|\xi |}^2)^{\frac{s}{2}}\,{{\hat{u}}} \in L^2\) and \({|\xi |}^{s}\,{{\hat{u}}} \in L^2\), respectively.

In [1] one can find the following properties for Bessel and Hankel functions:

Lemma 4.1

The function

$$\begin{aligned} \Gamma _{\gamma }(\tau )=\tau ^{-\gamma }J_{\gamma }(\tau ),\end{aligned}$$

where \(J_{\gamma }(\tau )\) is the Bessel function, is entire in \(\gamma \) and \(\tau \), in particular,

$$\begin{aligned} |J_{\gamma }(\tau )| \lesssim \tau ^{\gamma }, \quad 0<\tau <1. \end{aligned}$$
(4.6)

The Weber’s function \(Y_{\gamma }(\tau )\) satisfies for every integer n

$$\begin{aligned} Y_{n}(\tau )= \frac{2}{\pi }J_{n}(\tau )\ln \tau + A_n(\tau ),\end{aligned}$$

where \(\tau ^{n}A_{n}(\tau )\) is entire, non-null for \(\tau =0\) and

$$\begin{aligned} |A_n(\tau )| \lesssim \tau ^{-n}, \quad 0<\tau <1. \end{aligned}$$
(4.7)

The Hankel functions \(H^{\pm }_{\gamma }=J_{\gamma }\pm iY_{\gamma }\) satisfy

$$\begin{aligned}2(H^{\pm }_{\gamma })'(\tau )=H^{\pm }_{\gamma -1}(\tau )- H^{\pm }_{\gamma +1}(\tau ), \quad and \quad \tau (H^{\pm }_{\gamma })'(\tau )=\tau H^{\pm }_{\gamma -1}(\tau )-\gamma H^{\pm }_{\gamma }(\tau ).\end{aligned}$$

Moreover, \(H^{\pm }_{\gamma }(\tau ), \tau \ge K\) can be written as

$$\begin{aligned} H^{\pm }_{\gamma }(\tau )=e^{\pm i\tau } a_{\gamma }^{\pm }(\tau ), \end{aligned}$$
(4.8)

where \(a_{\gamma }^{\pm }(\tau ) \in S^{-\frac{1}{2}}(K, \infty )\) is a classical symbol of order \(-\frac{1}{2}\).

For small arguments \(0<\tau \le K <1\) we have

$$\begin{aligned} |H^{\pm }_{\gamma }(\tau )|\lesssim {\left\{ \begin{array}{ll} \tau ^{-|\gamma |}, \qquad if \ {} &{} \ \gamma \ne 0\\ -\ln (\tau ), \qquad if &{} \gamma = 0. \end{array}\right. } \end{aligned}$$
(4.9)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebert, M.R., Marques, J. & do Nascimento, W.N. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differ. Equ. Appl. 31, 23 (2024). https://doi.org/10.1007/s00030-023-00909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00909-0

Keywords

Mathematics Subject Classification

Navigation