Skip to main content
Log in

Non-radial solutions for higher order Hénon-type equation with critical exponent

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We consider the following polyharmonic equation with critical exponent

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{m} u = K(|y|)u^{m^*-1},u>0&{}\hbox {in } B_{1}(0), \\ \displaystyle u \in \mathscr {D}_0^{m,2}(B_1(0)), \end{array}\right. } \end{aligned}$$

where \(m>0\) is a integer, \(m^*=:\frac{2N}{N-2m}\), \(B_{1}(0)\) is the unit ball in \(\mathbb {R}^{N}\), \(N \ge 2m+4\), \(K:[0,1] \rightarrow \mathbb {R}^{N}\) is a bounded function, \(K'(1)>0\) and \(K''(1)\) exists. We prove a non-degeneracy result of the non-radial solutions constructed in Guo and Li (Calc Var PDEs 46(3–4):809–836, 2013) via the local Pohozaev identities for \(N \ge 2m+4\). Then we apply the non-degeneracy result to obtain new existence of non-radial solutions for \(N \ge 6m\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. I. Ann. Inst. H.Poincaré Anal. Non Linéaire 23(6), 803–828 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Differ. Equ. 216(1), 78–108 (2005)

    Article  MATH  Google Scholar 

  3. Bartsch, T., Weth, T.: Multiple solution of a critical polyharmonic equation. J. Reine Angew. Math. 571, 131–143 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Part. Differ. Equ. 18(3), 253–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brechio, E., Gazzola, F., Weth, T.: Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems. J. Reine Angew. Math. 620, 165–183 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Branson, T.P.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74(2), 199–291 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278(1), 1–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, S.Y.A., Yang, P.C.: Partial differential equations related to the Gauss–Bonnet–Chern integrand on 4-manifolds. Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000), 1–30, Univ. Lecture Ser., 27, Amer. Math. Soc., Providence, RI, (2002)

  9. Cao, D., Peng, S., Yan, S.: Asymptotic behaviour of ground state solution for the Hénon equation. IMA J. Appl. Math. 74(3), 468–480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. Partial. Differ. Equ. 16(2), 113–145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grunau, H.: Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponent. Calc. Var. PDEs 3(2), 243–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grunau, H., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary coditions. Math. Ann. 307(4), 589–626 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Li, B.: Infinitely many solutions for the prescribed curvature problem of polyharmonic operator. Calc. Var. PDEs 46(3–4), 809–836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y., Li, B., Li, Y.: Infinitely many non-radial solutions for the polyharmonic Hénon equation with a critical exponent. Proc. R. Soc. Edinb. Sect. A: Math. 147(2), 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Yi, H.: Non-degeneracy of bubble solutions for higher order prescribed curvature problem. Adv. Nonlinear Stud. 22(1), 15–40 (2022)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Hu, Y., Liu, T.: Non-degeneracy and new existence of nonradial solutions for the Henon equation with critical growth. Print

  17. Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Springer Science and Business Media (2010)

  18. Hénon, M.: Numerical experiments on the stabilty of spherical stellar systems. Astronom. Astrophys. 24, 229–238 (1973)

    Google Scholar 

  19. Hirano, N.: Existence of positive solution for the Hénon equation involving critical Sobolev terms. J. Differ. Equ. 247(5), 1311–1333 (2009)

    Article  MATH  Google Scholar 

  20. Peng, S.: Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation. Acta Math. Appl. Sin. Engl. Ser. 22(1), 137–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274(9), 2606–2633 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pistoia, A., Serra, E.: Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256(1), 75–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pure Appl. 69(1), 55–83 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial. Differ. Equ. 23(3), 301–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial. Differ. Equ. 18(1), 57–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, J., Yan, S.: Infinitely many nonradial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29(3), 997–1020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ni, W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31(6), 801–807 (1982)

Download references

Acknowledgements

The research of Y. Guo was supported by the National Natural Science Foundation of China (No. 12271283, 12031015). All the authors have same contribution. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

All authors did the same contributions.

Corresponding author

Correspondence to Yuxia Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The estimate of U-PU

In the following, we always assume that

$$\begin{aligned} x_j=\bigg ( r \cos \frac{2(j-1)\pi }{k},r \sin \frac{2(j-1)\pi }{k}, \textbf{0} \bigg ),\quad j=1,\ldots k, \end{aligned}$$

\(r\in [ \mu (1-\frac{r_0}{k}),\mu (1- \frac{r_1}{k})] \). Let \({\bar{x}}_j=\frac{1}{\mu }x_j\), G(xy) be the Green function of \((-\Delta )^m\) in \(B_1(0)\) with homogenous Dirichlet boundary condition, and H(xy) be the regular part of Green function. We use \(PU_{x_j,\Lambda _k \mu _k}\) to denote the solution of (1.6) and \(r_3=min (r_0,1)\).

For \(l=1,\ldots , N\), denote

$$\begin{aligned} \partial _l PU_{x,\Lambda \mu }=\frac{ \partial PU_{x,\Lambda \mu }(y)}{\partial x_l},\quad \partial _l U_{x,\Lambda \mu }=\frac{ \partial U_{x,\Lambda \mu }(y)}{\partial x_l}; \end{aligned}$$

for \(l=N+1\), we set

$$\begin{aligned} \partial _l PU_{x,\Lambda \mu }=\frac{ \partial PU_{x,\Lambda \mu }(y)}{\partial \mu },\quad \partial _l U_{x,\Lambda \mu }=\frac{ \partial U_{x,\Lambda \mu }(y)}{\partial \mu }. \end{aligned}$$

Lemma A.1

Assume \(N\ge 2m+4\), for any \(i=1,\ldots ,k\), if \(y\in B_{\frac{\mu r_3}{8k}(x_j)}\) and \(j\ne i\), then

$$\begin{aligned}{} & {} U_{x_i,\Lambda \mu }(y)-PU_{x_i,\Lambda \mu }(y)\nonumber \\{} & {} \quad =\frac{A_{N,m}H( x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{N-2m}} + O\left( \frac{1}{\mu ^{\frac{N-2m}{2}+2}|x_i -y |^{N-2m+2} }+\frac{k^{2m}}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N-2m}}\right) , \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} \partial _l U_{x_i,\Lambda \mu }(y)-\partial _l PU_{x_i,\Lambda \mu }(y)\nonumber \\{} & {} \quad =\frac{A_{N,m}\partial _l H( x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}}} +O\left( \frac{1}{\mu ^{\frac{N-2m}{2}+2}|x_i -y |^{N-2m+3} }+\frac{k^{2m+1}}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N-2m}}\right) ,\nonumber \\{} & {} \qquad \hbox { for } l=1,\ldots ,N, \end{aligned}$$
(A.2)

and

$$\begin{aligned}{} & {} \partial _{N+1} U_{x_i,\Lambda \mu }(y)-\partial _{N+1} PU_{x_i,\Lambda \mu }(y)\nonumber \\{} & {} \quad =\frac{-(N-2m)A_{N,m}H( x_i,y)}{2\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}+1} }+O\left( \frac{1}{\mu ^{\frac{N-2m}{2}+3}|x_i -y |^{N-2m+2} }\right. \nonumber \\{} & {} \qquad \left. +\frac{k^{2m}}{\mu ^{\frac{N+2m}{2}+1}|x_i -y |^{N-2m}}\right) , \end{aligned}$$
(A.3)

where \(A_{N,m}\) is a constant only depend on N and m.

If \(y\in B_{\frac{\mu r_3}{8k}}(x_i)\), then

$$\begin{aligned}{} & {} U_{x_i,\Lambda \mu }(y)-PU_{x_i,\Lambda \mu }(y)=\frac{A_{N,m}H( x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}}}+ O\left( \frac{k^{N-2m+2}}{\mu ^{\frac{N-2m}{2}+2 }}\right) , \end{aligned}$$
(A.4)
$$\begin{aligned}{} & {} \partial _l U_{x_i,\Lambda \mu }(y)-\partial _lPU_{x_i,\Lambda \mu }(y)=\frac{A_{N,m}\partial _l H(x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}}}\nonumber \\{} & {} \quad +O\left( \frac{k^{N-2m+3}}{\mu ^{\frac{N-2m}{2}+2}}\right) , \text { for } l=1,\ldots , N, \end{aligned}$$
(A.5)

and

$$\begin{aligned}{} & {} \partial _{N+1} U_{x_i,\Lambda \mu }(y)-\partial _{N+1} PU_{x_i,\Lambda \mu }(y)=\frac{-(N-2m)A_{N,m}H( x_i,y)}{2\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}+1} }\nonumber \\{} & {} \quad +O\left( \frac{k^{N-2m+2}}{\mu ^{\frac{N-2m}{2}+3}}\right) . \end{aligned}$$
(A.6)

Proof

By the potential theory,

$$\begin{aligned} \begin{aligned}&U_{x_i,\Lambda \mu } - PU_{x_i,\Lambda \mu }(y) \\&\quad = \int _{\mathbb {R}^{N}}\frac{C_{1,N,m}}{|x-y|^{N-2m}}\frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} }\\&\qquad - \int _{B_{1}(0)}G(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \\ {}&\quad = \int _{\mathbb {R}^{N}\setminus B_{1}(0)}\frac{C_{1,N,m}}{|x-y|^{N-2m}}\frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \\ {}&\qquad + \int _{B_{1}(0)}H(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \\ {}&\quad =M_1 +M_2. \end{aligned} \end{aligned}$$
(A.7)

Case 1: \( y\in B_{\frac{r_3}{8k}}(x_i)\), it is easy to check

$$\begin{aligned} |M_1| = O\left( \frac{k^{N}}{\mu ^{\frac{N+2m}{2} } }\right) , \end{aligned}$$
(A.8)

and

$$\begin{aligned} M_2= & {} \int _{B_{1}(0)\setminus B_{\frac{r_0}{2k}}(x_i) } H(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\{} & {} + \int _{ B_{\frac{r_0}{2k}(x_i)} }H(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\= & {} \int _{ B_{\frac{r_0}{2k}(x_i)} }H(x_i,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\{} & {} + O\left( \int _{ B_{\frac{r_0}{2k}(x_i)} }|x_{i} -x|^2|\nabla ^2 H(x_i +t(x_i-x),y) |\frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} }\right) \nonumber \\{} & {} +O\left( \frac{k^{N}}{\mu ^{\frac{N+2m}{2} }}\right) =\frac{A_{N,m}H(x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}}} + O\left( \frac{k^{N-2m+2}}{\mu ^{\frac{N-2m}{2}+2 }}\right) . \end{aligned}$$
(A.9)

So,

$$\begin{aligned} U_{x_i,\Lambda \mu }( y) - PU_{x_i,\Lambda \mu }(y) = \frac{A_{N,m}H(x_i,y)}{\Lambda ^{\frac{N-2m}{2}}\mu ^{\frac{N-2m}{2}}} + O\left( \frac{k^{N-2m+2}}{\mu ^{\frac{N-2m}{2}+2 }}\right) . \end{aligned}$$
(A.10)

Case 2: \( y \in B_{{\frac{r_3}{8k}}}(x_j)\), where \( j\ne i\). In this case, it is easy to check

$$\begin{aligned} M_1 =O\left( \frac{1}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N} } +\frac{k^{2m}}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N-2m}}\right) , \end{aligned}$$

and

$$\begin{aligned} M_2= & {} \int _{B_{1}(0)\setminus B_{\frac{|y-x_i|}{2}}(x_i) } H(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\{} & {} + \int _{ B_{\frac{|y-x_i|}{2}(x_i) } \cap B_{1}(0)}H(x,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\= & {} \int _{ B_{\frac{r_3}{8k}(x_i)} }H(x_i,y) \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} } \nonumber \\{} & {} + O\left( \int _{B_{\frac{|y-x_i|}{2}(x_i)} }|x_i-x|^2|\nabla ^2 H(x_i +t(x_i-x),y) |\frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} }\right) \nonumber \\{} & {} +O\left( \int _{ B_{\frac{|y-x_i|}{2}(x_i) } \setminus B_{\frac{r_3}{8k}(x_i)} } |H(x,y)| \frac{C_{2,N,m}(\Lambda \mu )^{\frac{N+2m}{2}}}{ (1 + (\Lambda \mu |x-x_i|)^{2})^{ \frac{N+2m}{2}} }\right) \nonumber \\{} & {} +O\left( \frac{1}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N} }\right) \nonumber \\= & {} \frac{A_{N,m}H(x_i,y)}{\Lambda ^{\frac{N-2m}{2} }\mu ^{\frac{N-2m}{2}}} + O\left( \frac{1}{\mu ^{\frac{N-2m}{2}+2}|x_i -y |^{N-2m+2} }+\frac{k^{2m}}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N-2m}}\right) .\nonumber \\ \end{aligned}$$
(A.11)

So

$$\begin{aligned} \begin{aligned}&U_{x_i,\Lambda \mu }( y) - PU_{x_i,\Lambda \mu }(y) \\&\quad = \frac{A_{N,m}H(x_i,y)}{\Lambda ^{\frac{N-2m}{2} }\mu ^{\frac{N-2m}{2}}} + O\left( \frac{1}{\mu ^{\frac{N-2m}{2}+2}|x_i -y |^{N-2m+2} }+\frac{k^{2m}}{\mu ^{\frac{N+2m}{2}}|x_i -y |^{N-2m}}\right) . \end{aligned}\nonumber \\ \end{aligned}$$
(A.12)

Since for \( l=1,...,N+1\),

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{m}\partial _l PU_{x_i,\Lambda \mu }(x) = \partial _l (U_{x_i,\Lambda \mu }( x))^{m^{*}-1}, &{}\hbox { in } B_{1}(0), \\ \displaystyle PU_{x_i,\Lambda \mu }(x) = 0, &{}x \in \partial B_{1}(0). \end{array}\right. } \end{aligned}$$
(A.13)

Similar to (A.1 ), (A.2), we can prove (A.4)–(A.6). \(\square \)

For the completeness of the proof, we supplement the estimation of the derivative of H. In area \(B_1(0)\) the Green function for the Dirichlet problem is positive and given by

$$\begin{aligned} G(x,y)=k_{m,N}\frac{1}{|x-y|^{N-2m}}\int _{1}^{\frac{ [xy]}{|x-y|}}\frac{(v^2-1)^{m-1}}{v^{N-1}}dv, \end{aligned}$$

where

$$\begin{aligned}{}[xy]=\big ||x|y-\frac{x}{|x|}\big |,k_{m,N}=\frac{1}{w_n4^{m-1}}((m-1)!)^2, \end{aligned}$$

\(w_n\) is the n-dimensional unit sphere surface area. Using the following identity

$$\begin{aligned} \int _{1}^\infty \frac{(v^2-1)^{m-1}}{v^{N-1}}dv=\frac{2^{m-1}(m-1)!}{(N-2)\ldots (N-2m)}, \end{aligned}$$

and (B.13) we can get the expression of H

$$\begin{aligned} H(x,y) = \Gamma (x,y)-G(x,y)=k_{m,N}\frac{1}{|x-y|^{N-2m}}\int ^{\infty }_{\frac{ [xy]}{|x-y|}}\frac{(v^2-1)^{m-1}}{v^{N-1}}dv, \end{aligned}$$
(A.14)

we have

Lemma A.2

The above function H is satisfied

$$\begin{aligned} |\frac{\partial ^{\alpha } H(x,y)}{\partial ^{\alpha _1} x_1\ldots \partial ^{\alpha _N} x_N}|\le \frac{C_{m,N}}{[xy]^{N-2m+\alpha }}, \quad \alpha \ge 0 \quad \alpha _1+\cdots +\alpha _s=\alpha . \end{aligned}$$
(A.15)

Proof

By definition after a variable substitution, we have

$$\begin{aligned} \begin{aligned} H(x,y)=&\frac{k_{m,N}}{[xy]^{N-2m}}\int _{1}^\infty \frac{(v^2-\frac{|x-y|^2}{[xy]^2})^{m-1}}{v^{N-1}}dv\\ \le&\frac{k_{m,N}}{[xy]^{N-2m}} \int _{1}^\infty \frac{1}{v^{N-2m+1}}dv\\ \le&C\frac{1}{[xy]^{N-2m}}, \end{aligned} \end{aligned}$$

repeated derive the function and similarity calculation lead us to the result.

\(\square \)

Appendix B. Pohozaev indentities and the estimates of Green’s function

In this part, we will establish the Pohozaev indentities for polyharmonic operator in the small domain \(B_{\frac{\delta }{k_n}}(x_{k_n,1})\), where \(\delta >0\) is a small fixed constant. And then we give some expression related to Green’s function. We will use the same notations as before.

Recall that the equation and its linearized equation read as:

$$\begin{aligned} (-\Delta )^m u = K(|y|) u^{m^*-1},\text { in } B_1(0); \end{aligned}$$
(B.1)

and

$$\begin{aligned} (-\Delta )^m\xi =(m^*-1)K(|y|)u^{m^*-2}\xi , \text { in } B_1(0). \end{aligned}$$
(B.2)

Lemma B.1

If m is even and \(B \subset B_1(0)\) is a smooth area, then

$$\begin{aligned} \begin{aligned} \int _{B}u^{m^*-1}\xi \frac{\partial K(|y|)}{\partial y_s}&= \int _{\partial B}K(|y|)u^{m^*-1}\xi \nu _s -\int _{\partial B} \Delta ^{\frac{m}{2}}u\Delta ^{\frac{m}{2}}\xi \nu _s\\&\quad +\sum _{i=1}^{\frac{m}{2}}\bigg ( \int _{\partial B}\Delta ^{m-i}u \frac{\partial ^2\Delta ^{i-1}\xi }{\partial y_s\partial \nu }-\int _{\partial B}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\frac{\partial \Delta ^{i-1}\xi }{\partial y_s}\\&\quad +\int _{\partial B} \Delta ^{m-i}\xi \frac{\partial ^2 \Delta ^{i-1}u }{\partial y_s\partial \nu }-\int _{\partial B} \frac{\partial \Delta ^{m-i}\xi }{\partial \nu }\frac{\partial \Delta ^{i-1}u}{\partial y_s}\bigg ), \end{aligned} \end{aligned}$$
(B.3)

and

$$\begin{aligned} \begin{aligned}&\int _{B}u^{m^*-1}\xi \langle \nabla K(|y|),y-x_{0}\rangle \\&\quad = \int _{\partial B}K(|y|)u^{m^*-1}\xi \langle \nu ,y-x_{0}\rangle - \int _{\partial B}\Delta ^{\frac{m}{2}}u\Delta ^{\frac{m}{2}}\xi \langle \nu ,y-x_{0}\rangle \\&\qquad -\sum _{i=1}^{\frac{m}{2}}\bigg (\int _{\partial B}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}\langle \nabla \xi ,y-x_{0}\rangle +\int _{\partial B}\Delta ^{m-i}u\frac{\partial \Delta ^{i-1}\langle \nabla \xi ,y-x_{0}\rangle }{\partial \nu }\\&\qquad -\int _{\partial B} \frac{ \partial \Delta ^{m-i}\xi }{\partial \nu }\Delta ^{i-1}\langle \nabla u,y-x_{0}\rangle +\int _{\partial B} \Delta ^{m-i}\xi \frac{\partial \Delta ^{i-1}\langle \nabla u,y-x_{0}\rangle }{\partial \nu }\bigg )\\&\qquad +\frac{N-2m}{2}\sum _{i=1}^{\frac{m}{2}}\bigg (\int _{\partial B} \Delta ^{m-i}u\frac{\partial \Delta ^{i-1}\xi }{\partial \nu }+\int _{\partial B}\Delta ^{m-i}\xi \frac{\partial \Delta ^{i-1}u}{\partial \nu }\\&\qquad -\int _{\partial B} \frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}\xi -\int _{\partial B}\frac{\partial \Delta ^{m-i}\xi }{\partial \nu }\Delta ^{i-1}u\bigg ), \end{aligned}\nonumber \\ \end{aligned}$$
(B.4)

where \(x_0\in B_1(0)\), \(\nu \) is the out-of-unit normal derivative of B, \(s=1,\ldots ,N\) and \(\nu _s \) is the s-th component of \(\nu \).

Lemma B.2

If m is odd and \(B \subset B_1(0)\) is a smooth area, then

$$\begin{aligned} \begin{aligned}&\int _{B}u^{m^*-1}\xi \frac{\partial K(|y|)}{\partial y_s}\\&\quad = \int _{\partial B}K(|y|)u^{m^*-1}\xi \nu _s -\int _{\partial B} \langle \nabla \Delta ^{\frac{m-1}{2}}u,\nabla \Delta ^{\frac{m-1}{2}}\xi \rangle \nu _s \\&\qquad -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B}\Delta ^{m-i}u \frac{\partial ^2\Delta ^{i-1}\xi }{\partial y_s\partial \nu }+\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\frac{\partial \Delta ^{i-1}\xi }{\partial y_s}\\&\qquad -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B} \Delta ^{m-i}\xi \frac{\partial ^2 \Delta ^{i-1}u }{\partial y_s\partial \nu }+\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B} \frac{\partial \Delta ^{m-i}\xi }{\partial \nu }\frac{\partial \Delta ^{i-1}u}{\partial y_s},\\ \end{aligned} \end{aligned}$$
(B.5)

and

$$\begin{aligned}&\int _{B}u^{m^*-1}\xi \langle \nabla K(|y|),y-x_{0}\rangle \\&\quad = \int _{\partial B}K(|y|)u^{m^*-1}\xi \langle \nu ,y-x_{0}\rangle - \int _{\partial B}\langle \nabla \Delta ^{\frac{m-1}{2}}u,\nabla \Delta ^{\frac{m-1}{2}}\xi \rangle \langle \nu , y-x_{0}\rangle \\&\qquad +\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}\langle \nabla \xi ,y-x_{0}\rangle -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B}\Delta ^{m-i}u\frac{\partial \Delta ^{i-1}\langle \nabla \xi ,y-x_{0}\rangle }{\partial \nu }\\&\qquad +\int _{\partial B} \frac{ \partial \Delta ^{m-i}\xi }{\partial \nu }\Delta ^{i-1}\langle \nabla u ,y-x_{0}\rangle -\sum _{i=1}^{\frac{m-1}{2}} \int _{\partial B} \Delta ^{m-i}\xi \frac{\partial \Delta ^{i-1}\langle \nabla u,y-x_{0}\rangle }{\partial \nu }\\&\qquad -\frac{N-2m}{2}\sum _{i=1}^{\frac{m-1}{2}}\bigg (\int _{\partial B} \Delta ^{m-i}u\frac{\partial \Delta ^{i-1}\xi }{\partial \nu }+\int _{\partial B}\Delta ^{m-i}\xi \frac{\partial \Delta ^{i-1}u}{\partial \nu }\bigg )\\&\qquad +\frac{N-2m}{2}\sum _{i=1}^{\frac{m+1}{2}}\bigg ( \int _{\partial B} \frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}\xi -\int _{\partial B}\frac{\partial \Delta ^{m-i}\xi }{\partial \nu }\Delta ^{i-1}u\bigg ),\\ \end{aligned}$$

where \(x_0\in B_1(0)\), \(\nu \) is the out-of-unit normal derivative of B, \(s=1,\ldots ,N\) and \(\nu _s \) is the s-th component of \(\nu \).

The proof of the above two lemmas are similar. We only give the outline of proofs. For the first lemma, we multiply the two Eqs. (B.1) and (B.2) by \(\frac{\partial \xi }{\partial y_s}\) and \(\frac{\partial u }{\partial y_s}\) respectively; for the second part, we multiply the two Eqs. (B.1) and (B.2) by \(\langle \nabla \xi ,y-x_0\rangle \) and \(\langle \nabla u,y-x_0\rangle \) respectively, finally use integral by parts to get the result. For specific details, please refer to [15] Lemma 2.1 and 2.2.

Next, let us discuss the following identities involving Green function, which is very important when proving non-degenerate properties. We add definitions for N is odd:

$$\begin{aligned}&I_{1,2}(u,v,d)= \int _{\partial B_d}K(|y|)u^{m^*-1}v \nu _1 -\int _{\partial B_d} \langle \nabla \Delta ^{\frac{m-1}{2}}u,\nabla \Delta ^{\frac{m-1}{2}}v \rangle \nu _1 \\&\quad -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B_d}\Delta ^{m-i}u \frac{\partial ^2\Delta ^{i-1}v }{\partial y_1\partial \nu }+\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B_d}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\frac{\partial \Delta ^{i-1}v}{\partial y_1}\\&\quad -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B_d} \Delta ^{m-i}v \frac{\partial ^2 \Delta ^{i-1}u }{\partial y_1\partial \nu }+\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B_d} \frac{\partial \Delta ^{m-i}v }{\partial \nu }\frac{\partial \Delta ^{i-1}u}{\partial y_1}, \\&I_{2,2}(u,v,d)= \int _{\partial B_d}K(|y|)u^{m^*-1}v \langle \nu ,y-x_{x_{k_n},1}\rangle \\ {}&\quad - \int _{\partial B_d}\langle \nabla \Delta ^{\frac{m-1}{2}}u,\nabla \Delta ^{\frac{m-1}{2}}v\rangle \langle \nu , y-x_{x_{k_n},1}\rangle \\&\quad +\sum _{i=1}^{\frac{m+1}{2}}\int _{\partial B_d}\frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}\langle \nabla v ,y-x_{x_{k_n},1}\rangle \\ {}&\quad -\sum _{i=1}^{\frac{m-1}{2}}\int _{\partial B_d}\Delta ^{m-i}u\frac{\partial \Delta ^{i-1}\langle \nabla v ,y-x_{x_{k_n},1}\rangle }{\partial \nu }\\&\quad +\int _{\partial B_d} \frac{ \partial \Delta ^{m-i}v }{\partial \nu }\Delta ^{i-1}\langle \nabla u ,y-x_{x_{k_n},1}\rangle \\ {}&\quad -\sum _{i=1}^{\frac{m-1}{2}} \int _{\partial B_d} \Delta ^{m-i}v \frac{\partial \Delta ^{i-1}\langle \nabla u,y-x_{x_{k_n},1}\rangle }{\partial \nu }\\&\quad -\frac{N-2m}{2}\sum _{i=1}^{\frac{m-1}{2}}\bigg (\int _{\partial B_d} \Delta ^{m-i}u\frac{\partial \Delta ^{i-1}v }{\partial \nu }+\int _{\partial B_d}\Delta ^{m-i}v\frac{\partial \Delta ^{i-1}u}{\partial \nu }\bigg )\\&\quad +\frac{N-2m}{2}\sum _{i=1}^{\frac{m+1}{2}}\bigg ( \int _{\partial B_d} \frac{\partial \Delta ^{m-i}u}{\partial \nu }\Delta ^{i-1}v-\int _{\partial B_d}\frac{\partial \Delta ^{m-i}v }{\partial \nu }\Delta ^{i-1}u\bigg ).\\ \end{aligned}$$

Lemma B.3

For any \(d\in (0,\frac{\delta }{k_n} )\), where \(\delta >0 \) is a fixed small constant, we have

$$\begin{aligned}{} & {} I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=I_{1,2}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d) \nonumber \\{} & {} \quad =-2\frac{\partial H}{\partial y_1}(x_{k_n,1},x_{k_n,1}), \end{aligned}$$
(B.6)
$$\begin{aligned}{} & {} I_{1,1}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}G(y,x_{k_n,j}),d) =I_{1,2}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}G(y,x_{k_n,j}),d) \nonumber \\{} & {} \quad =\sum _{j=2}^{k_n}\frac{\partial G}{\partial y_1}(x_{k_n,1},x_{k_n,j}), \end{aligned}$$
(B.7)
$$\begin{aligned}{} & {} I_{2,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=I_{2,2}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)\nonumber \\{} & {} \quad =(N-2m)H(x_{k_n,1},x_{k_n,1}), \end{aligned}$$
(B.8)
$$\begin{aligned}{} & {} I_{2,1}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}G(y,x_{k_n,j}),d)=I_{2,2}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}G(y,x_{k_n,j}),d)\nonumber \\{} & {} \quad =-\frac{N-2m}{2}\sum _{j=2}^{k_n}G(x_{k_n,1},x_{k_n,j}), \end{aligned}$$
(B.9)
$$\begin{aligned}{} & {} I_{2,1}(G(y,x_{k_n,1}),\frac{\partial G}{\partial x_1}(y,x_{k_n,1}),d)=I_{2,2}(G(y,x_{k_n,1}),\frac{\partial G}{\partial x_1}(y,x_{k_n,1}),d)\nonumber \\{} & {} \quad =(N-2m+1)\frac{\partial H}{\partial y_1} (x_{k_n,1},x_{k_n,1}), \end{aligned}$$
(B.10)
$$\begin{aligned}{} & {} I_{2,1}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}(cos\theta _j \frac{\partial G}{\partial x_1}(x_{k_n,1},x_{k_n,j}) +sin\theta _j \frac{\partial G}{\partial x_2}(x_{k_n,1},x_{k_n,j})),d)\nonumber \\{} & {} \quad =I_{2,2}(G(y,x_{k_n,1}),\sum _{j=2}^{k_n}(cos\theta _j \frac{\partial G}{\partial x_1}(x_{k_n,1},x_{k_n,j}) +sin\theta _j \frac{\partial G}{\partial x_2}(x_{k_n,1},x_{k_n,j})),d)\nonumber \\{} & {} \quad =-\frac{N-2m}{2}\sum _{j=2}^{k_n}\frac{\partial G}{\partial y_1}(x_{k_n,1},x_{k_n,j}), \end{aligned}$$
(B.11)

and

$$\begin{aligned} \begin{aligned}&I_{2,1}\left( \sum _{j=2}^{k_n}G(y,x_{k_n,j}\right) ,\frac{\partial G}{\partial x_1}(y,x_{k_n,1}),d)=I_{2,2}\left( \sum _{j=2}^{k_n}G(y,x_{k_n,j}\right) ,\frac{\partial G}{\partial x_1}(y,x_{k_n,1}),d)\\&\quad =-\frac{N-2m+2}{2}\sum _{j=2}^{k_n}\frac{\partial G}{\partial y_1}(x_{k_n,1},x_{k_n,j}). \end{aligned} \end{aligned}$$
(B.12)

Proof

We give the proving process of (B.6), (B.8) and (B.10). The rest can be deduced similarly. In the first place, in the domain \(B_d(x_{k_n,1})\backslash B_\epsilon (x_{k_n,1}),0<\epsilon <d\), we have

$$\begin{aligned} \begin{aligned}&I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)-I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),\epsilon )\\&\quad =\int _{B_d(x_{k_n,1})\backslash B_{\epsilon } (x_{k_n,1})}(-\Delta )^mG(y,x_{k_n,1})\frac{\partial G}{\partial y_1}(y,x_{k_n,1})\\&\qquad +(-\Delta )^mG(y,x_{k_n,j})\frac{\partial G}{\partial y_1}(y,x_{k_n,1})\\&\quad =0. \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=\lim _{\epsilon \rightarrow 0 }I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),\epsilon ), \end{aligned} \end{aligned}$$

while noting that \(G(y,x)=\Gamma (y,x)-H(y,x)\), where \(\Gamma (y,x)\) is the foundamental solution:

$$\begin{aligned}{} & {} \Gamma (y,x)=\Gamma _{m,N}(y,x)\nonumber \\{} & {} \quad =\frac{1 }{\omega _N 2^{m-1}(N-2)\ldots (N-2m)(m-1)!|y-x|^{N-2m}}, \end{aligned}$$
(B.13)

and H is a regular function. Then by the linear of \(I_{i,j},i,j\in \{1,2\}\) and the symmetry of the integration region we have

$$\begin{aligned} \begin{aligned}&I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),\epsilon )\\&\quad = I_{1,1}(\Gamma (y,x_{k_n,1})-H(y,x_{k_n,1}),\Gamma (y,x_{k_n,1})-H(y,x_{k_n,1}),\epsilon )\\&\quad = I_{1,1}(\Gamma (y,x_{k_n,1}),\Gamma (y,x_{k_n,1}),\epsilon )-2I_{1,1}(\Gamma (y,x_{k_n,1}),H(y,x_{k_n,1}),\epsilon )\\&\qquad +I_{1,1}(H(y,x_{k_n,1}),H(y,x_{k_n,1}),\epsilon )\\&\quad =-2 \frac{\partial H }{\partial y_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1). \end{aligned} \end{aligned}$$

Let \(\epsilon \rightarrow 0\), \(I_{1,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=-2 \frac{\partial H }{\partial y_1}(x_{k_n,1},x_{k_n,1})\),by the exactly same way we can have \(I_{1,2}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=-2 \frac{\partial H }{\partial y_1}(x_{k_n,1},x_{k_n,1})\) so (B.6) is proved.

We start to prove (B.8), a direct calulation leads to

$$\begin{aligned} \begin{aligned}&I_{2,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)-G(y,x_{k_n,1}),G(y,x_{k_n,1}),\epsilon )\\&\quad =\int _{B_d(x_{k_n,1})\backslash B_{\epsilon } (x_{k_n,1})} (\Delta )^mG(y,x_{k_n,1})\langle \nabla G(y,x_{k_n,1}),y-x_{k_n,1}\rangle \\&\qquad +\int _{B_d(x_{k_n,1})\backslash B_{\epsilon } (x_{k_n,1})} (\Delta )^mG(y,x_{k_n,j})\langle \nabla G(y,x_{k_n,1}),y-x_{k_n,1}\rangle \\&\qquad +(N-2m)\int _{B_d(x_{k_n,1})\backslash B_{\epsilon } (x_{k_n,1})}(\Delta )^mG(y,x_{k_n,1})G(y,x_{k_n,1})\\&\quad =0. \end{aligned} \end{aligned}$$

We still have

$$\begin{aligned} I_{2,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=\lim _{\epsilon \rightarrow 0 }I_{2,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),\epsilon ), \end{aligned}$$

using the same calculation method,

$$\begin{aligned} I_{2,1}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=(N-2m)H(x_{k_n,1},x_{k_n,1}). \end{aligned}$$

As for the \(I_{2,2}(G(y,x_{k_n,1}),G(y,x_{k_n,1}),d)=(N-2m)H(x_{k_n,1},x_{k_n,1})\) is directly availble. In the following, we give a brief calculation process of (B.10). For \(I_{2,1}\): by (B.13) and the symmetry of the area \(B_d(x)\) and the regularity of H we have:

$$\begin{aligned} \begin{aligned}&I_{2,1}(G(y,x_{k_n,1}), \frac{\partial G}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = I_{2,1}(\Gamma (y,x_{k_n,1})-H(y,x_{k_n,1}), \frac{\partial (\Gamma -H) }{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = I_{2,1}(\Gamma (y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )-I_{2,1}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\qquad -I_{2,1}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )+I_{2,1}(H(y,x_{k_n,1}), \frac{\partial H }{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = -I_{2,1}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )-I_{2,1}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )+o_{\epsilon }(1), \end{aligned} \end{aligned}$$

By direct computations,

$$\begin{aligned} \begin{aligned}&I_{2,1}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = -\frac{N-2m}{2}\int _{\partial B_\epsilon (x_{k_n,1})}\frac{\partial \Delta ^{m-1}\Gamma }{\partial \nu }\frac{\partial H}{\partial x_1}(y,x_{k_n,1})+o_{\epsilon }(1)\\&\quad = -\frac{N-2m}{2} \frac{\partial H}{\partial x_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1),\\ \end{aligned} \end{aligned}$$

since for m is even we have

$$\begin{aligned} \int _{\partial B_\epsilon (x_{k_n,1})}\frac{\partial \Delta ^{m-1}\Gamma }{\partial \nu }=1, \end{aligned}$$

For the second one:

$$\begin{aligned} \begin{aligned}&I_{2,1}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1}(y,x_{k_n,1}),\epsilon )\\&\quad =-\int _{B_{\epsilon }(x_{k_n,1})}\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu }\langle \nabla H,y-x_{k_n,1}\rangle \\&\qquad + \int _{B_{\epsilon }(x_{k_n,1})} \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})\frac{\partial \langle \nabla H,y-x_{k_n,1}\rangle }{\partial \nu }\\&\qquad +\frac{N-2m}{2}\int _{B_{\epsilon }(x_{k_n,1})}\Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})\frac{\partial H}{\partial \nu }-\frac{N-2m}{2}\\&\qquad \int _{B_{\epsilon }(x_{k_n,1})}\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu } H +o_{\epsilon }(1), \end{aligned} \end{aligned}$$

we will need the following basic results:

$$\begin{aligned} \begin{aligned} \Delta ^{m-1}\Gamma =&\frac{(-1)^{m-1}}{(N-2)w_N|y-x|^{N-2}},\quad \int _{\partial B_\epsilon (x) }\frac{\partial \Delta ^{m-1} \Gamma }{\partial \nu }=(-1)^{m}, \\&\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu }=(-1)^m\frac{(N-1)(y-x_{k_n,1})_1 }{w_N|y-x_{k_n,1}|^{N+1}}. \end{aligned} \end{aligned}$$

A direct calculation shows

$$\begin{aligned}{} & {} -\int _{B_{\epsilon }(x_{k_n,1})}\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu }\langle \nabla H,y-x_{k_n,1}\rangle =-\frac{N-1}{N}\frac{\partial H}{\partial y_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1), \\{} & {} \int _{B_{\epsilon }(x_{k_n,1})} \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})\frac{\partial \langle \nabla H,y-x_{k_n,1}\rangle }{\partial \nu }=\\{} & {} \quad -\int _{B_{\epsilon }(x_{k_n,1})}\frac{(y-x_{k_n,1})_1^2}{|y-x_{k_n,1}|^2}\frac{\partial H}{\partial y_1}(y,x_{k_n,1})+o_{\epsilon }(1) \\{} & {} \quad = -\frac{1}{N}\frac{\partial H}{\partial y_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1). \end{aligned}$$

therefore we have

$$\begin{aligned} \begin{aligned}&I_{2,1}(G(y,x_{k_n,1}), \frac{\partial G}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad =\left( \frac{N-2m}{2}+\frac{N-1}{N}+\frac{1}{N} + \frac{N-2m}{2} \left( \frac{1}{N}+\frac{N-1}{N} \right) \right) \frac{\partial H}{\partial y_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1)\\&\quad =(N-2m+1)\frac{\partial H}{\partial y_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1). \end{aligned} \end{aligned}$$

Let \(\epsilon \rightarrow 0\) we get (B.10) for m is even. As for m is odd, similar calculations show that:

$$\begin{aligned}{} & {} I_{2,2}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )=-\frac{N-2m}{2} \frac{\partial H}{\partial x_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1), \\{} & {} I_{2,2}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1}(y,x_{k_n,1}),\epsilon )\\{} & {} \quad =\int _{B_{\epsilon }(x_{k_n,1})}\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu }\langle \nabla H,y-x_{k_n,1}\rangle \\{} & {} \qquad - \int _{B_{\epsilon }(x_{k_n,1})} \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})\frac{\partial \langle \nabla H,y-x_{k_n,1}\rangle }{\partial \nu }\\{} & {} \qquad -\frac{N-2m}{2}\int _{B_{\epsilon }(x_{k_n,1})}\Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})\frac{\partial H}{\partial \nu }+\frac{N-2m}{2}\\{} & {} \qquad \int _{B_{\epsilon }(x_{k_n,1})}\frac{\partial \Delta ^{m-1}(\frac{\partial \Gamma }{\partial x_1})}{\partial \nu } H +o_{\epsilon }(1)\\{} & {} \quad =\left( \frac{1-N}{N}-\frac{N-2m}{2}\frac{1}{N}-\frac{1}{N}+\frac{N-2m}{2}\frac{1-N}{N} \right) \frac{\partial H}{\partial x_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1), \end{aligned}$$

so

$$\begin{aligned} \begin{aligned}&I_{2,2}(G(y,x_{k_n,1}), \frac{\partial G}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = I_{2,2}(\Gamma (y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )-I_{2,2}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\qquad -I_{2,2}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )+I_{2,2}(H(y,x_{k_n,1}), \frac{\partial H }{\partial x_1 }(y,x_{k_n,1}),\epsilon )\\&\quad = -I_{2,2}(\Gamma (y,x_{k_n,1}),\frac{\partial H}{\partial x_1 }(y,x_{k_n,1}),\epsilon )-I_{2,2}(H(y,x_{k_n,1}),\frac{\partial \Gamma }{\partial x_1 }(y,x_{k_n,1}),\epsilon )+o_{\epsilon }(1)\\&\quad =(N-2m+1)\frac{\partial H}{\partial x_1}(x_{k_n,1},x_{k_n,1})+o_{\epsilon }(1). \end{aligned} \end{aligned}$$

(B.10) is proved. \(\square \)

Appendix C. Green function

In this part, we give the estimate of modified Green function \(G_k\), which is used in Lemma 3.1. It’s necessary for the construction of new bubble solutions.

In general, for any function f defined in \({\mathbb {R}}^N\), we define its corresponding function \(f^*\in H_s\) as follows. We first define \(A_j\) as

$$\begin{aligned} A_j z= \left( r \cos \left( \theta +\frac{2j \pi }{k}\right) , r \sin \left( \theta +\frac{2j \pi }{k}\right) , z''\right) ,\quad j=1, \ldots , k, \end{aligned}$$

where \(z= (z', z'')\in {\mathbb {R}}^N\), \(z'= (r\cos \theta , r\sin \theta )\in {\mathbb {R}}^2\), \(z''\in {\mathbb {R}}^{N-2}\), while

$$\begin{aligned} B_i z= \bigl ( z_1,\ldots , z_{i-1}, -z_i, z_{i+1},\ldots , z_N),\quad i=1, \ldots , N. \end{aligned}$$

Let

$$\begin{aligned} {\bar{f}}(y)=\frac{1}{k}\sum _{j=1}^k f(A_j y), \end{aligned}$$

and

$$\begin{aligned} f^*(y) = \frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \bigl ( {\bar{f}}(y)+ {\bar{f}}(B_i y)\bigr ). \end{aligned}$$

Then one can easily check that \(f^*\in H_s\).

In the following, we discuss the Green’s function of \(L_k\). Since \(\delta _x\) is not in the space \(H_s\), we consider

$$\begin{aligned} L_k u = \delta _x^*, \hbox { in } B_{1}(0), \quad u\in H_s\cap \mathscr {D}_0^{m,2}(B_1(0)). \end{aligned}$$
(C.1)

The solution of (C.1) is denoted as \(G_k(y, x)\), which we call it the Green function of \(L_k.\) Let

$$\begin{aligned} \delta _x^* =\frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \Bigl ( \frac{1}{k}\sum _{j=1}^k \delta _{A_j x}+ \frac{1}{k}\sum _{j=1}^k \delta _{B_i A_j x}\Bigr ). \end{aligned}$$

We have

Proposition C.1

The solution \(G_k(y, x)\) satisfies

$$\begin{aligned} |G_k(y, x)|\le \frac{C}{N-2m+1}\sum _{i=2}^N \Bigl ( \frac{1}{k}\sum _{j=1}^k \frac{C}{|y- A_j x|^{N-2m}}+ \frac{1}{k}\sum _{j=1}^k \frac{C}{|y- B_i A_j x|^{N-2m}}\Bigr ). \end{aligned}$$

Proof

Let \(v_1= G(x,y)\) be the Green’s function of \((-\Delta )^{m}\) in \(B_{1}(0)\) with Dirichlet boundary condition, which can constructed the solution of following polyharmonic equation

$$\begin{aligned} \left\{ \begin{aligned}&(-\Delta )^mu= f, \text { in } B_1(0)\\&D^\alpha u|_{\partial \Omega }=0, \text { for }|\alpha |\le m-1. \end{aligned} \right. \end{aligned}$$
(C.2)

f is a datum in a suitable functional space and u is the unknown solution, then

$$\begin{aligned} u(x)=\int _{B_1(0)}G(x,y)f(y)dy,\quad x\in \Omega , \end{aligned}$$

holds ture. As before we denote \([xy]=\bigg ||x|y-\frac{x}{|x|}\bigg |\) for domain \(B_1(0)\), we have

$$\begin{aligned}{} & {} G(x,y)=k_{m,N}|x-y|^{2m-N}\int _1^{\frac{[xy]}{|x-y|}}(v^2-1)^{m-1}v^{1-N}dv, \\{} & {} G(x,y)\simeq |x-y|^{2m-N}\min \bigg \{1,\frac{d(x)^md(y)^m}{|x-y|^{2m}}\bigg \},\text { where }d(x)=dist(x,\partial B_1(0)). \end{aligned}$$

Let \(v_2\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{m} v= (m^*-1)K(y) u_k^{m^*-2} v_1,&{} \text {in}\; B_{1}(0),\\ D^\alpha v|_{\partial \Omega }=0 \text { for }|\alpha |\le m-1. \end{array}\right. } \end{aligned}$$

Then \(v_2\ge 0\) and

$$\begin{aligned}{} & {} v_2(y)= \displaystyle \int _{B_{1}(0)}G(z, y) (m^*-1) u_k^{m^*-2} K(y)v_1\\{} & {} \quad \le C \displaystyle \int _{B_1(0)}\frac{1}{|y-z|^{N-2m}}\frac{1}{|z-x|^{N-2m}}\,dz. \end{aligned}$$

We can continue this process to find \(v_i\), which is the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{m} v= (m^*-1) u_k^{m^*-2}K(y) v_{i-1},&{} \text {in}\; B_{1}(0),\\ D^\alpha v|_{\partial \Omega }=0 \text { for }|\alpha |\le m-1. \end{array}\right. } \end{aligned}$$

And satisfies

$$\begin{aligned} \begin{aligned} 0\le&v_i (y)\\ =&\int _{B_{1}(0)}G(z, y) (m^*-1) u_k^{m^*-2} K(y)v_{i-1}\\ \le&C \int _{B_{1}(0)}\frac{1}{|y-z|^{N-2m}}\frac{1}{|z-x|^{N-2m(i-1)}}\,dz\\ \le&\frac{C}{|y-x|^{N-2mi}}. \end{aligned} \end{aligned}$$

Let i be large so that \(v_i\in L^\infty (B_{1}(0))\). Define

$$\begin{aligned} v=\sum _{l=1}^i v_l\quad \hbox { and } w= G_k(y, x)- v^*, \end{aligned}$$

We then have

$$\begin{aligned} {\left\{ \begin{array}{ll} L_k w = f,&{}\hbox {in } B_{1}(0),\\ w = 0,&{}\hbox {on } \partial B_{1}(0), \end{array}\right. } \end{aligned}$$
(C.3)

where \(f\in L^\infty \cap H_s\). By Theorem 1.1, (C.3) has a solution \(w\in H_s\cap \mathscr {D}_0^{m,2}(B_1(0))\).

By the regularity results of polyharmonic Dirichlet boundary conditions (Theorem 2.20 of [17] ), we have

$$\begin{aligned} ||w||_{L^{\infty }(B_1(0))}\le C||f||_{L^{\infty }(B_1(0))}. \end{aligned}$$

Thus the conclusion is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., hu, Y. & Li, D. Non-radial solutions for higher order Hénon-type equation with critical exponent. Nonlinear Differ. Equ. Appl. 30, 56 (2023). https://doi.org/10.1007/s00030-023-00862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00862-y

Mathematics Subject Classification (2020)

Navigation