Skip to main content
Log in

On the Cahn–Hilliard equation with no-flux and strong anchoring conditions

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The Cahn–Hilliard equation is a common model to describe phase separation processes of a mixture of two components. We study the Cahn–Hilliard equation coupled with the homogeneous strong anchoring condition (i.e., homogeneous Dirichlet condition) on the relative concentration u of the two phases. Moreover, we adopt no-flux boundary condition to keep conservation of mass. With a specific quartic form of the double-well potential, we prove the existence and uniqueness of the weak solution to this model by interpreting the problem as a gradient flow of the Cahn–Hilliard free energy. Utilizing the minimizing movement scheme and time discretization method, we show that the approximation solutions converge to the weak solution of the Cahn–Hilliard equation. Finally, we prove that the weak solution satisfies an energy dissipation inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Alessio, F., Wilfrid, G., Türkay, Y.: A variational method for a class of parabolic PDEs. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5(10), 207–252 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and the Wasserstein spaces of probability measures. Lectures in Mathematics, ETH Zürich, Birkhäuser (2005)

  3. Arendt, W., Chalendar, I., Eymard, R.: Galerkin approximation of linear problems in Banach and Hilbert spaces. IMA Journal of Numerical Analysis, Oxford University Press (OUP), (2020). arXiv:0226.4895v3f [hal]

  4. Baňas, L., Nürnberg, R.: Adaptive finite element methods for Cahn-Hilliard equations. J. Comput. Applied Math. 218(1), 2–11 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Baňas, L., Nürnberg, R.: A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy. ESAIM: Math. Modelling Numer. Anal. 43(5), 1003–1026 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190(2), 371–397 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Bates, P., Han, J.: The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation. J. Math. Anal. Appl. 311(1), 289–312 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Beard, R.W., Saridis, G.N., Wen, J.T.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33(12), 2159–2177 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Bronsard, L., Hilhorst, D.: On the slow dynamics for the Cahn-Hilliard equation in one space dimension. Proc. Royal Soc. A 439(1907), 669–682 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration-dependent mobility: Motion by minus the Laplacian of the mean curvature. European J. Appl. Math. 7, 287–301 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Google Scholar 

  13. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30, 1121–1135 (1959)

    Google Scholar 

  14. Ceniceros, H.D., Roma, A.M.: A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation. J. Comput. Phys. 225(2), 1849–1862 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional. SIAM J. Applied Math. 69(6), 1712–1738 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Choksi, R., Sternberg, P.: Periodic phase separation: the periodic Cahn–Hilliard and isoperimetric problems. Interfaces Free Bound. 8(3), 371–392 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Cohen, D., Murray, J.M.: A generalized diffusion model for growth and dispersion in a population. J. Math. Biol. 12, 237–248 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Dai, S., Du, Q.: Coarsening mechanism for systems governed by the Cahn–Hilliard equation with degenerate diffusion mobility. Multiscale Model. Simul. 12(4), 1870–1889 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Dai, S., Du, Q.: Weak solutions for the Cahn–Hilliard equation with degenerate mobility. Arch. Ration. Mech. Anal. 219(3), 1161–1184 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Dai, S., Du, Q.: Weak solutions for the Cahn–Hilliard equation with phase-dependent diffusion mobility. Arch. Ration. Mech. Anal. 219(3), 1161–1184 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Dai, S., Li, B., Luong, T.: Minimizers for the Cahn–Hilliard energy under strong anchoring conditions. SIAM J. Appl. Math. 80(5), 2299–2317 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Dai, S., Liu, Q., Luong, T., Promislow, K.: On nonnegative solutions for the functionalized Cahn–Hilliard equation with degenerate mobility. Results Appl. Math. 12, 100195 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Dai, S., Liu, Q., Promislow, K.: Weak solutions for the Functionalized Cahn–Hilliard equation with degenerate mobility. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1585536

    Article  MATH  Google Scholar 

  24. DeGroot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover Publications Inc., Mineola, N. Y. (1984)

    Google Scholar 

  25. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Dehghan, M., Mohebbi, A.: Multigrid solution of high order discretisation for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind. Appl. Math. Comput. 180, 575–593 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Elliott, C., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Elliott, C., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Evans, L.C.: Partial Differential Equations, 2nd edn. Amer. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  31. Feng, W.M., Yu, P., Hu, S.Y., Liu, Z.K., Du, Q., Chen, L.Q.: Spectral implementation of an adaptive moving mesh method for phase-field equations. J. Comput. Phys. 220(1), 498–510 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Fleißner, F.C.: A minimizing movement approach to a class of scalar reaction-diffusion equations. ESAIM Control Optim. Calc. Var. 27(18) (2021)

  33. Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Disc. Cont. Dyn. Syst. 37(8), 4277–4308 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Garcke, H., Nestler, B., Stoth, B.: A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60(1), 295–315 (1999)

    MathSciNet  MATH  Google Scholar 

  35. De Giorgi, E.: New Problems on Minimizing Movements. In: Boundary Value Problems for PDEs and Applications, pp. 81–98. Masson (1993)

  36. De Giorgi, E., Mariono, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 68(8), 180–187 (1980)

    MathSciNet  Google Scholar 

  37. Gómez, H., Calo, V., Bazilevs, Y., Hughes, T.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Meth. Appl. Mech. Eng. 197(49–50), 4333–4352 (2008)

    MathSciNet  MATH  Google Scholar 

  38. He, L.: Error estimation of a class of stable spectral approximation to the Cahn–Hilliard equation. J. Sci. Comput. 41(3), 461–482 (2009)

    MathSciNet  MATH  Google Scholar 

  39. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Klapper, I., Dockery, J.: Role of cohesion in the material description of biofilms. Phys. Rev. E 74, 0319021–0319028 (2006)

    MathSciNet  Google Scholar 

  41. Ladyzhenskaya, O.A.: Global solvability of a boundary value roblem for the Navier–Stokes equations in the case of two spatial variables. Doklady USSR 123, 427–429 (1958)

    Google Scholar 

  42. Lamorgese, A.G., Mauri, R.: Diffuse-interface modeling of phase segregation in liquid mixtures. Intern. J. Multiphase Flow 34(10), 987–995 (2008)

    Google Scholar 

  43. Li, M., Ober, C.K.: Block copolymer patterns and templates. Mater. Today 9(9), 30–39 (2006)

    Google Scholar 

  44. Li, Y., Jeong, D., Shin, J., Kim, J.: A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains. Comput. Math. Appl. 65(1), 102–115 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    MATH  Google Scholar 

  46. Lisini, S.: Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces. ESAIM Control Optim. Calc. Var. 15(3), 712–740 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Liu, Y., Liu, W.K.: Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220, 139–154 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Comput. Coupling Phase Diagr. Thermochem. 32, 268–294 (2008)

    Google Scholar 

  49. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Google Scholar 

  50. Pego, R.L.: Front migration in the nonlinear Cahn–Hilliard equation. Proc. Royal Soc. Lond. A 442, 261–278 (1989)

    MathSciNet  MATH  Google Scholar 

  51. Rossi, R., Savaré, G.: Gradient flows of non convex functionals in hilbert spaces and applications. ESAIM Control Optim. Calc. Var. 12(3), 564–614 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Tremaine, S.: On the origin of irregular structure in Saturn’s rings. Astron. J. 125, 894 (2003)

    Google Scholar 

  53. Santambrogio, F.: Euclidean, metric, and Wasserstein gradient flows: an overview. Bull. Math. Sci. 7, 87–154 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Saxena, R., Caneba, G.T.: Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent systems. Polym. Eng. Sci. 42, 1019–1031 (2002)

    Google Scholar 

  55. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. 146, 65–96 (1986)

    MATH  Google Scholar 

  56. Stefanelli, U.: A new minimizing-movements scheme for curves of maximal slope. arXiv:2103.00846. March (2021)

  57. Thiele, U., Knobloch, E.: Thin liquid films on a slightly inclined heated plate. Physica D 190, 213–248 (2004)

    MathSciNet  MATH  Google Scholar 

  58. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Wheeler, B., Hammadi, R., Ma, X.: Self-assembled 3d nanoporous biomimetic material embedded with green synthesized gold nanoparticles for high-performance non-enzymatic glucose sensor (submitted)

  60. Wise, S., Lowengrub, J., Frieboes, H., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    MathSciNet  MATH  Google Scholar 

  61. Yang, W., Huang, Z., Zhu, W.: Image segmentation using the Cahn–Hilliard equation. J. Sci. Comput. 79, 1057–1077 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Ye, X.: The Fourier collocation method for the Cahn–Hilliard equation. Comput. Math. Appl. 44(1–2), 213–229 (2002)

    MathSciNet  MATH  Google Scholar 

  63. Zhou, B., Powell, A.: Phase field simulation of early stage structure formation during immersion precipitation of polymeric membranes in 2D and 3D. J. Membr. Sci. 268, 150–164 (2006)

    Google Scholar 

  64. Zhu, Y., Aissou, K., Andelman, D., Man, X.: Orienting cylinder-forming block copolymer thin films: The combined effect of substrate corrugation and its surface energy. Macromolecules 52(3), 1241–1248 (2019)

    Google Scholar 

  65. Zinsl, J., Matthes, D.: Discrete approximation of the minimizing movement scheme for evolution equations of Wasserstein gradient flow type with nonlinear mobility. arXiv:1609.06907, September (2016)

Download references

Funding

The work of the first author was partially supported by the U.S. National Science Foundation through Grant DMS-1815746.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contribute equally to this work.

Corresponding author

Correspondence to Shibin Dai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Ladyzhenskaya’s inequality

Appendix: Ladyzhenskaya’s inequality

The Ladyzhenskaya’s inequality was introduced by O. A. Ladyzhenskaya [41] to prove the existence and uniqueness of long-time solutions to the Navier–Stokes equations in \({\mathbb {R}}^2\) when the initial data is sufficiently smooth. This inequality is a member of a class of inqualities known as interpolation inequalities.

Lemma 4.3

(Ladyzhenskaya’s inequality) Let \(\Omega \) be a Lipschitz domain in \({\mathbb {R}}^d\) (\(d=2\) or 3) and \(f \in H_0^1(\Omega )\). Then there exists a constant \(C > 0\) depending only on \(\Omega \) such that

$$\begin{aligned} ||f||_{L^4(\Omega )} \le C ||f||_{L^2(\Omega )}^{1/2} ||\nabla f||_{L^2(\Omega )}^{1/2} \quad \textrm{if}\; d=2, \\ ||f||_{L^4(\Omega )} \le C ||f||_{L^2(\Omega )}^{1/4} ||\nabla f||_{L^2(\Omega )}^{3/4} \quad \textrm{if}\; d=3. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Luong, T. On the Cahn–Hilliard equation with no-flux and strong anchoring conditions. Nonlinear Differ. Equ. Appl. 30, 49 (2023). https://doi.org/10.1007/s00030-023-00854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00854-y

Mathematics Subject Classification

Navigation