Skip to main content
Log in

Stationary fronts and pulses for multistable equations with saturating diffusion

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We deal with stationary solutions of a reaction-diffusion equation with flux-saturated diffusion and multistable reaction term, in dependence on a positive parameter \(\varepsilon \). Motivated by previous numerical results obtained by A. Kurganov and P. Rosenau (Nonlinearity, 2006), we investigate stationary solutions of front and pulse-type and discuss their qualitative features. We study the limit of such solutions for \(\varepsilon \rightarrow 0\), showing that, in spite of the wide variety of profiles that can be constructed, there is essentially a unique configuration in the limit for both stationary fronts and pulses. We finally discuss some variational features that include the case where the solutions having continuous energy may not be global minimizers of the associated action functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, La., 1974), pp. 5–49. Lecture Notes in Mathematics, Vol. 446 (1975)

  4. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical solutions of a prescribed curvature equation. J. Diff. Eq. 243(2), 208–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonheure, D., Obersnel, F., Omari, P.: Heteroclinic solutions of the prescribed curvature equation with a double-well potential. Diff. Integral Eq. 26(11–12), 1411–1428 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Boscaggin, A., Colasuonno, F., De Coster, C.: Multiple bounded variation solutions for a prescribed mean curvature equation with Neumann boundary conditions. J. Diff. Equ. 285, 607–639 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burns, M., Grinfeld, M.: Steady state solutions of a bi-stable quasi-linear equation with saturating flux. Eur. J. Appl. Math. 22(4), 317–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campos, J., Corli, A., Malaguti, L.: Saturated fronts in crowds dynamics. Adv. Nonlinear Stud. 21(2), 303–326 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cisternas, J., Rohe, K., Wehner, S.: Reaction-diffusion fronts and the butterfly set. Chaos 30(11), 14 (2020). (113138)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corli, A., Malaguti, L.: Semi-wavefront solutions in models of collective movements with density-dependent diffusivity. Dyn. Partial Differ. Equ. 13(4), 297–331 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottet, G.-H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comp. 61(204), 659–673 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  14. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garrione, M.: Vanishing diffusion limits for planar fronts in bistable models with saturation. Trans. Amer. Math. Soc. 374(6), 3999–4021 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garrione, M., Sanchez, L.: Monotone traveling waves for reaction-diffusion equations involving the curvature operator. Bound. Value Probl. 2015(45), 31 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Garrione, M., Strani, M.: Heteroclinic traveling fronts for reaction–convection–diffusion equations with a saturating diffusive term. Indiana Univ. Math. J. 68(6), 1767–1799 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion–Convection Reaction. Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkhäuser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  19. Goodman, J., Kurganov, A., Rosenau, P.: Breakdown in Burgers-type equations with saturating dissipation fluxes. Nonlinearity 12(2), 247–268 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurganov, A., Rosenau, P.: Effects of a saturating dissipation in Burgers-type equations. Comm. Pure Appl. Math. 50(8), 753–771 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurganov, A., Rosenau, P.: On reaction processes with saturating diffusion. Nonlinearity 19(1), 171–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leda, M.: On the variety of traveling fronts in one-variable multistable reaction-diffusion systems. J. Phys. Chem. A. 110(25), 7882–7887 (2006)

    Article  Google Scholar 

  23. Logan, J.D.: Biological invasions with flux-limited dispersal. Math. Sci. Res. J. 7(2), 47–62 (2003)

    MathSciNet  MATH  Google Scholar 

  24. López-Gómez, J., Omari, P.: Global components of positive bounded variation solutions of a one-dimensional indefinite quasilinear Neumann problem. Adv. Nonlinear Stud. 19(3), 437–473 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malaguti, L., Marcelli, C.: Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms. Math. Nachr. 242, 148–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Obersnel, F., Omari, P.: Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation. Discrete Contin. Dyn. Syst. 33(1), 305–320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Omari, P., Sovrano, E.: Positive solutions of indefinite logistic growth models with flux-saturated diffusion. Nonlinear Anal. 201, 26 (2020). (111949)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roques, L., Garnier, J., Hamel, F., Klein, E.K.: Allee effect promotes diversity in traveling waves of colonization. Phys. Rev. A 109(23), 8828–8833 (2012)

    MathSciNet  Google Scholar 

  29. Rosenau, P.: Free-energy functionals at the high-gradient limit. Phys. Rev. A 41, 2227–2230 (1990)

    Article  Google Scholar 

  30. Terman, D.: Directed graphs and traveling waves. Trans. Amer. Math. Soc. 289(2), 809–847 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, T., Jin, C., Ji, S.: Discontinuous traveling wave entropy solutions of a modified Allen-Cahn model, Acta Math. Sci. Ser. B (Engl. Ed.) 37(6): 1740–1760 (2017)

  32. Yin, J.X., Li, H.L., Pang, P.Y.H.: \(BV\) solutions of a singular diffusion equation. Math. Nachr. 253, 92–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zemskov, E. P.: Front bifurcation in a tristable reaction-diffusion system under periodic forcing, Phys. Rev. E (3) 69 (3) (2004) 036208, 8

Download references

Acknowledgements

The authors sincerely thank Prof. Pierpaolo Omari for helpful comments and the anonymous referee for his/her suggestions, which helped to improve a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Sovrano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and acknowledge financial support from this institution. The first author has been supported by the PRIN project 201758MTR2: “Direct and inverse problems for partial differential equations: theoretical aspects and applications.” The second author has been supported by the Fondation Sciences Mathématiques de Paris (FSMP) through the project: “Reaction-diffusion equations in population genetics: a study of the influence of geographical barriers on traveling waves and non-constant stationary solutions”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrione, M., Sovrano, E. Stationary fronts and pulses for multistable equations with saturating diffusion. Nonlinear Differ. Equ. Appl. 30, 31 (2023). https://doi.org/10.1007/s00030-023-00842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00842-2

Keywords

Mathematics Subject Classification

Navigation