Skip to main content
Log in

Existence in the nonlinear Schrödinger equation with bounded magnetic field

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The paper studies existence of ground states for the nonlinear Schrödinger equation

$$\begin{aligned} -(\nabla + {\mathbf {i}}A(x))^2u+V(x)u=|u|^{p-1}u ,\quad 2<p<2^*, \end{aligned}$$
(0.1)

with a general external magnetic field. In particular, no lattice periodicity or symmetry of the magnetic field, or presence of external electric field is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MathSciNet  Google Scholar 

  2. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bégout, P.: The dual space of a complex Banach restricted to the field of real numbers (preprint)

  4. Begout, P., Schindler, I.: On a stationary Schrödinger equation with periodic magnetic potential. RACSAM 115, 72 (2021)

    Article  Google Scholar 

  5. Bonheure, D., Nys, M., Van Schaftingen, J.: Properties of ground states of nonlinear Schrödinger equations under a weak constant magnetic field. J. Math. Pures Appl. 124, 123–168 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bonheure, D., Cingolani, S., Nys, M.: Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field. Calc. Var. 55, 1–33 (2016)

    Article  Google Scholar 

  7. Cingolani, S., Jeanjean, L., Tanaka, K.: Multiple complex-valued solutions for nonlinear magnetic Schrödinger equations. J. Fixed Point Theory Appl. 19, 37–66 (2017)

    Article  MathSciNet  Google Scholar 

  8. Clapp, M., Szulkin, A.: Multiple solutions to a nonlinear Schrödinger equation with Aharonov–Bohm magnetic potential. NoDEA Nonlinear Differ. Equ. Appl. 17, 229–248 (2010)

    Article  Google Scholar 

  9. Devillanova, G., Tintarev, C.: Nonlinear Schrödinger equation with bounded magnetic field. J. Differ. Equ. 269, 8998–9025 (2020)

    Article  Google Scholar 

  10. Devillanova, G., Solimini, S.: Some remarks on profile decomposition theorems. Adv. Nonlinear Stud. 16, 795–805 (2016)

    Article  MathSciNet  Google Scholar 

  11. Enstedt, M., Tintarev, K.: Weighted spectral gap for magnetic Schrödinger operators with a potential term. Potential Anal. 31(3), 215–226 (2009). (English summary)

    Article  MathSciNet  Google Scholar 

  12. Esteban, M., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations, vol. I, 401–449, Progr. Nonlinear Differential Equations Appl., vol. 1. Birkhäuser Boston, Boston, MA (1989)

  13. Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778 (2000)

    Article  MathSciNet  Google Scholar 

  14. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. In: Annales de l’I.H.P. Analyse non linéaire, vol. 1, pp. 109–145 (1984)

  15. Schindler, I., Tintarev, K.: A nonlinear Schrödinger equation with external magnetic field. Rostock. Math. Kolloq. 56, 49–54 (2002)

    MATH  Google Scholar 

  16. Schindler, I., Tintarev, K.: An abstract version of the concentration compactness principle. Rev. Mat. Complut. 15, 1–20 (2002)

    Article  MathSciNet  Google Scholar 

  17. Skrzypczak, L., Tintarev, C.: Defect of compactness for Sobolev spaces on manifolds with bounded geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), vol. XX, 1665–1695 (2020)

  18. Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. Henry Poincaré 12, 319–337 (1995)

    Article  MathSciNet  Google Scholar 

  19. Solimini, S., Tintarev, C.: Concentration analysis in Banach spaces. Commun. Contemp. Math. 18, 1550038 (2016)

    Article  MathSciNet  Google Scholar 

  20. Tintarev, C.: Concentration Compactness: Functional-Analytic Theory of Concentration Phenomena. De Gruyter, Berlin (2020)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Schindler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

One of the authors (I.S.) acknowledges funding from ANR under Grant ANR-17-EUR-0010 (Investissements d’Avenir program). Another author (C.T.) thanks CEREMATH at University of Toulouse 1 Capitole for their warm hospitality. He also acknowledges access to the library resources of Uppsala University.

Appendix

Appendix

In homogeneous Sobolev spaces equipped with the group of shifts and dilations, one has the following profile decomposition of Solimini which we quote in a slightly refined version of [20, Theorem 4.6.4].

Theorem 5.2

(Sergio Solimini, [18]) Let \((u_{k})\) be a bounded sequence in \({\dot{H}}^{m,p}(\mathbb {R}^{N})\), \(m\in \mathbb {N}\), \(1<p<N/m\). Then it has a renamed subsequence and there exist sequences of isometries on \({\dot{H}}^{m,p}(\mathbb {R}^{N})\), \((g_{k}^{(n)})_{k\in \mathbb {N}})_{n\in \mathbb {N}}\), and functions \(w^{(n)}\in {\dot{H}}^{m,p}(\mathbb {R}^{N})\), such that \(g_{k}^{(n)}u{\mathop {=}\limits ^{\mathrm {def}}}2^{ \frac{N-mp}{p}j_{k}^{(n)}}u(2^{j_{k}^{(n)}}(\cdot -y_{k}^{(n)}))\), \(j_{k}^{(n)}\in \mathbb {Z}\), \(y_{k}^{(n)}\in \mathbb {R}^{N}\), \(n\in \mathbb {N}\), with

$$\begin{aligned} j_{k}^{(0)}=0, y_{k}^{(0)}=0, \bigl | j_{k}^{(n)}-j_{k}^{(m)} \bigr | +\bigl (2^{j_{k}^{(n)}}+2^{j _{k}^{(m)}}\bigr ) \bigl | y_{k}^{(n)}-y_{k}^{(m)} \bigr | \rightarrow \infty ,m\ne n,\nonumber \\ \end{aligned}$$
(5.5)

such that \([g_{k}^{(n)}]^{-1}u_{k}\rightharpoonup w^{(n)}\) in \({\dot{H}}^{m,p}(\mathbb {R}^{N})\),

$$\begin{aligned} u_{k}-\sum _{n\in \mathbb {N}} g_{k}^{(n)}w^{(n)}\rightarrow 0 \text { in } L^{p_{m} ^{*}} \bigl (\mathbb {R}^{N}\bigr ), \end{aligned}$$
(5.6)

the series \(\sum _{n\in \mathbb {N}} g_{k}^{(n)}w^{(n)}\) converges in \({\dot{H}}^{m,p}(\mathbb {R}^{N})\) unconditionally with respect to n and uniformly in k, and

$$\begin{aligned} \sum _{n\in \mathbb {N}}\int _{\mathbb {R}^{N}} \bigl | \nabla ^{m}w^{(n)} \bigr | ^{p} \mathrm {d}{x} \le \liminf _{k \rightarrow \infty } \int _{\mathbb {R}^{N}} \bigl | \nabla ^{m}u_{k} \bigr | ^{p}\mathrm {d}{x} . \end{aligned}$$
(5.7)

This theorem cannot be directly applied to sequences bounded in \(\dot{H}^{1,2}_A(\mathbb {R}^N)\) with the magnetic potential as in (5.1). However its proof can be trivially modified for this space, given that \(\dot{H}^{1,2}_A(\mathbb {R}^N)\) is continuously embedded into \(H^{1,2}_\mathrm{loc}(\mathbb {R}^N)\) and into \(L^{p^*}(\mathbb {R}^N)\). The modifications are analogous to the argument used in the proof of Theorem 3.2 in the subcritical case and are omitted. We have:

Theorem 5.3

Let \((u_{k})\) be a bounded sequence in \(\dot{H}^{1,2}_A(\mathbb {R}^N)\), \(N\ge 3\). Then it has a renamed subsequence and there exist functions \(w^{(n)}\in {H}_\mathrm{loc}^{1,2}(\mathbb {R}^{N})\) and sequences of bounded operators in \({H}_\mathrm{loc}^{1,2}(\mathbb {R}^{N})\), \((g_{k}^{(n)})_{k\in \mathbb {N}}\), such that \(g_{k}^{(n)}u{\mathop {=}\limits ^{\mathrm {def}}}2^{ \frac{N-2}{2}j_{k}^{(n)}}u(2^{j_{k}^{(n)}}(\cdot -y_{k}^{(n)}))\), \(j_{k}^{(n)}\in \mathbb {Z}\), \(y_{k}^{(n)}\in \mathbb {R}^{N}\), \(n\in \mathbb {N}\), with

$$\begin{aligned} j_{k}^{(0)}=0, y_{k}^{(0)}=0, \bigl | j_{k}^{(n)}-j_{k}^{(m)} \bigr | +\bigl (2^{j_{k}^{(n)}}+2^{j _{k}^{(m)}}\bigr ) \bigl | y_{k}^{(n)}-y_{k}^{(m)} \bigr | \rightarrow \infty ,m\ne n,\nonumber \\ \end{aligned}$$
(5.8)

such that \([g_{k}^{(n)}]^{-1}u_{k}\rightharpoonup w^{(n)}\) in \({H}^{1,2}_\mathrm{loc}(\mathbb {R}^{N})\),

$$\begin{aligned} u_{k}-\sum _{n\in \mathbb {N}} g_{k}^{(n)}w^{(n)}\rightarrow 0 \text { in } L^{p ^{*}} \bigl (\mathbb {R}^{N}\bigr ), \end{aligned}$$
(5.9)

the series \(\sum _{n\in \mathbb {N}} g_{k}^{(n)}w^{(n)}\) converges in \({H}^{1,2}_\mathrm{loc}(\mathbb {R}^{N})\) unconditionally and uniformly in k, and

$$\begin{aligned} \sum _{n\in \mathbb {N}}\int _{\mathbb {R}^{N}} \bigl | \nabla _{A^{(n)}}w^{(n)} \bigr | ^{2} \mathrm {d}{x} \le \liminf _{k \rightarrow \infty } \int _{\mathbb {R}^{N}} \bigl | \nabla _A u_{k} \bigr | ^{2}\mathrm {d}{x}, \end{aligned}$$
(5.10)

where

$$\begin{aligned} A^{(n)}=\lim _{k\rightarrow \infty } 2^{-j_{k}^{(n)}}A(2^{j_{k}^{(n)}}\cdot +y_{k}^{(n)}). \end{aligned}$$
(5.11)

Moreover under conditions of Theorem 5.2 one has the following “iterated Brezis-Lieb lemma” [20, Theorem 4.7.1]:

$$\begin{aligned} \int _{\mathbb {R}^{N}} \bigl |u_{k} \bigr | ^{2^*}\mathrm {d}{x} \longrightarrow \sum _{n\in \mathbb {N}}\int _{\mathbb {R}^{N}} \bigl |w^{(n)} \bigr | ^{2^*} \mathrm {d}{x} . \end{aligned}$$
(5.12)

An elementary modification of the argument from [20, Theorem 4.7.1] also gives

$$\begin{aligned} \int _{\mathbb {R}^{N}} V(x)\bigl |u_{k} \bigr | ^{2}\mathrm {d}{x} \longrightarrow \sum _{n\in \mathbb {N}}\int _{\mathbb {R}^{N}}V^{(n)}(x) \bigl |w^{(n)} \bigr | ^{2} \mathrm {d}{x}, \end{aligned}$$
(5.13)

where

$$\begin{aligned} V^{(n)}=\lim _{k\rightarrow \infty }2^{-2j_{k}^{(n)}}V(2^{j_{k}^{(n)}}\cdot +y_{k}^{(n)}). \end{aligned}$$
(5.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, I., Tintarev, C. Existence in the nonlinear Schrödinger equation with bounded magnetic field. Nonlinear Differ. Equ. Appl. 29, 33 (2022). https://doi.org/10.1007/s00030-022-00763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00763-6

Keywords

Mathematics Subject Classification

Navigation