Skip to main content
Log in

On the least-energy solutions of the pure Neumann Lane–Emden equation

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We study the pure Neumann Lane–Emden problem in a bounded domain

$$\begin{aligned} -\Delta u = |u|^{p-1} u \text { in }\Omega , \qquad \partial _\nu u=0 \text { on }\partial \Omega , \end{aligned}$$

in the subcritical, critical, and supercritical regimes. We show existence and convergence of least-energy (nodal) solutions (l.e.n.s.). In particular, we prove that l.e.n.s. converge to a l.e.n.s. of a problem with sign nonlinearity as \(p\searrow 0\); to a l.e.n.s. of the critical problem as \(p\nearrow 2^*-1\) (in particular, pure Neumann problems exhibit no blowup phenomena at the critical Sobolev exponent); and we show that the limit as \(p\rightarrow 1\) depends on the domain. Our proofs rely on different variational characterizations of solutions including a dual approach and a nonlinear eigenvalue problem. Finally, we also provide a qualitative analysis of l.e.n.s., including symmetry, symmetry-breaking, and monotonicity results for radial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  2. Banuelos, R., Burdzy, K.: On the “Hot Spots’’ conjecture of J Rauch. J. Funct. Anal. 164(1), 1–33 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., Micheletti, A.M., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Partial Differ. Equ. 26(3), 265–282 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bonheure, D., Bouchez, V., Grumiau, Ch., Van Schaftingen, J.: Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth. Commun. Contemp. Math. 10(4), 609–631 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bonheure, D., Grumiau, C., Troestler, C.: Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions. Nonlinear Anal. 147, 236–273 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bonheure, D., Moreira-dos-Santos, E., Parini, E., Tavares, H., Weth, T.: Nodal solutions for sublinear-type problems with Dirichlet boundary conditions. Int. Math. Res. Not. 1, 1 (2022)

  7. Brézis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  Google Scholar 

  8. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  10. Brock, F.: Symmetry and monotonicity of solutions to some variational problems in cylinders and annuli. Electron. J. Differ. Equ., pages No. 108, 20 pp (electronic) (2003)

  11. Catrina, F.: A refinement of the radial Pohozaev identity. Math. Bohem. 135(2), 143–150 (2010)

    Article  MathSciNet  Google Scholar 

  12. Cherrier, P.: Meilleures constantes dans des inégalités relatives aux espaces de Sobolev. Bull. Sci. Math. (2) 108(3), 225–262 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Comte, M., Knaap, M.C.: Existence of solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary condition in general domains. Differ. Integr. Equ. 4(6), 1133–1146 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Comte, M., Knaap, M.C.: Solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary conditions. Manuscripta Math. 69(1), 43–70 (1990)

    Article  MathSciNet  Google Scholar 

  15. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  17. Girão, P., Weth, T.: The shape of extremal functions for Poincaré–Sobolev-type inequalities in a ball. J. Funct. Anal. 237(1), 194–223 (2006)

    Article  MathSciNet  Google Scholar 

  18. Grossi, M.: On the shape of solutions of an asymptotically linear problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(3), 429–449 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Grossi, M., Saldaña, A., Tavares, H.: Sharp concentration estimates near criticality for radial sign-changing solutions of Dirichlet and Neumann problems. Proc. Lond. Math. Soc. (3) 120(1), 39–64 (2020)

    Article  MathSciNet  Google Scholar 

  20. Han, Z.C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(2), 159–174 (1991)

    Article  MathSciNet  Google Scholar 

  21. Ianni, I., Saldaña, A.: Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems. J. Differential Equations 304, 102–164 (2021)

  22. Ma, T., Wang, T.: Bifurcation Theory and Applications, volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co., Pte. Ltd., Hackensack (2005)

    Google Scholar 

  23. Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure Appl. Math. 6, 103–156; addendum, 395 (1953)

  24. Parini, E., Weth, T.: Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems. Math. Z. 280(3–4), 707–732 (2015)

    Article  MathSciNet  Google Scholar 

  25. Rassias, G.M., Rassias, Th.M. (eds.): Differential Geometry, Calculus of Variations, and Their Applications. Lecture Notes in Pure and Applied Mathematics, vol. 100. Marcel Dekker Inc, New York (1985)

  26. Rey, Olivier: Proof of two conjectures of H. Brézis and L. A. Peletier. Manuscripta Math. 65(1), 19–37 (1989)

    Article  MathSciNet  Google Scholar 

  27. Saldaña, A., Tavares, H.: Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions. J. Differ. Equ. 265(12), 6127–6165 (2018)

    Article  MathSciNet  Google Scholar 

  28. Saldaña, A., Weth, T.: Asymptotic axial symmetry of solutions of parabolic equations in bounded radial domains. J. Evol. Equ. 12(3), 697–712 (2012)

    Article  MathSciNet  Google Scholar 

  29. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differ. Equ. 18(1), 57–75 (2003)

    Article  MathSciNet  Google Scholar 

  30. Struwe, M.: Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 4th edn. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008)

  31. Weth, T.: Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Dtsch. Math.-Ver. 112(3), 119–158 (2010)

    Article  MathSciNet  Google Scholar 

  32. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

A. Saldaña was supported by UNAM-DGAPA-PAPIIT grant IA101721, Mexico; H. Tavares was partially supported by the Portuguese government through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the projects UID/MAT/04459/2020, PTDC/MAT-PUR/28686/2017, and PTDC/MAT-PUR/1788/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Saldaña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldaña, A., Tavares, H. On the least-energy solutions of the pure Neumann Lane–Emden equation. Nonlinear Differ. Equ. Appl. 29, 30 (2022). https://doi.org/10.1007/s00030-022-00762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00762-7

Keywords

Mathematics Subject Classification

Navigation