Skip to main content
Log in

Well-posedness for the fourth-order Schrödinger equation with third order derivative nonlinearities

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We study the Cauchy problem to the semilinear fourth-order Schrödinger equations:

$$\begin{aligned} {\left\{ \begin{array}{ll} i\partial _t u+\partial _x^4u=G\left( \left\{ \partial _x^{k}u\right\} _{k\le \gamma },\left\{ \partial _x^{k}{\bar{u}}\right\} _{k\le \gamma }\right) , &{} t>0,\ x\in {\mathbb {R}},\\ \ \ \ u|_{t=0}=u_0\in H^s({\mathbb {R}}), \end{array}\right. }\quad \quad (4\mathrm{NLS}) \end{aligned}$$

where \(\gamma \in \{1,2,3\}\) and the unknown function \(u=u(t,x)\) is complex valued. In this paper, we consider the nonlinearity G of the polynomial

$$\begin{aligned} G(z)=G(z_1,\ldots ,z_{2(\gamma +1)}) :=\sum _{m\le |\alpha |\le l}C_{\alpha }z^{\alpha }, \end{aligned}$$

for \(z\in {\mathbb {C}}^{2(\gamma +1)}\), where \(m,l\in {\mathbb {N}}\) with \(3\le m\le l\) and \(C_{\alpha }\in {\mathbb {C}}\) with \(\alpha \in ({\mathbb {N}}\cup \{0\})^{2(\gamma +1)}\) is a constant. The purpose of the present paper is to prove well-posedness of the problem (4NLS) in the lower order Sobolev space \(H^s({\mathbb {R}})\) or with more general nonlinearities than previous results. Our proof of the main results is based on the contraction mapping principle on a suitable function space employed by Pornnopparath (J Differ Equ, 265:3792–3840, 2018). To obtain the key linear and bilinear estimates, we construct a suitable decomposition of the Duhamel term introduced by Bejenaru et al. (Ann Math 173:1443–1506, 2011). Moreover we discuss scattering of global solutions and the optimality for the regularity of our well-posedness results, namely we prove that the flow map is not smooth in several cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173, 1443–1506 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Koch, H., Saut, J.C.: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci. Ser. 1 330, 87–92 (2000)

    MATH  Google Scholar 

  4. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}}^3\). Ann. Math. 167, 767–865 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fukumoto, Y.: Motion of a curve vortex filament: higher-order asymptotics. In: Kambe, T., Nakano, T., Miyauchi, T. (eds.) Proceedings of IUTAM Symposium on Geometry and Statistics of Turbulence, pp. 211–216. Kluwer (2001)

  6. Fukumoto, Y.: Three dimensional motion of a vortex filament and its relation to the localized induction hierarchy. Eur. Phys. J. B. 29, 167–171 (2002)

    Article  Google Scholar 

  7. Fukumoto, Y., Moffatto, H.K.: Motion and expansion of a viscous vortex ring. Part I. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 1–45 (2000)

    Article  MathSciNet  Google Scholar 

  8. Guo, C., Sun, S., Ren, H.: The local well-posedness for nonlinear fourth-order Schrödinger equation with mass-critical nonlinearity and derivative. Bound. Value Probl. 2014, 90 (2014)

  9. Hao, C., Hsiao, L., Wang, B.: Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces. J. Math. Anal. Appl. 328, 58–83 (2007)

  10. Hayashi, N., Naumkin, P.I.: Asymptotic properties of solutions to dispersive equation of Schrödinger type. J. Math. Soc. Jpn. 60, 631–652 (2008)

    Article  Google Scholar 

  11. Hayashi, N., Naumkin, P.I.: Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case. Nonlinear Anal. 116, 112–131 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hayashi, N., Naumkin, P.I.: Factorization technique for the fourth-order nonlinear Schrödinger equation. Z. Angew. Math. Phys. 66, 2343–2377 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hayashi, N., Naumkin, P.I.: Large time asymptotics for the fourth-order nolinear Schrödinger equation. J. Differ. Equ. 258, 880–905 (2015)

    Article  Google Scholar 

  14. Hirayama, H., Okamoto, M.: Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Commun. Pure. Appl. Anal. 15, 831–851 (2016)

    Article  MathSciNet  Google Scholar 

  15. Huo, Z., Jia, Y.: The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament. J. Differ. Equ. 214, 1–35 (2005)

    Article  Google Scholar 

  16. Huo, Z., Jia, Y.: A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the voltex filament. Commun. Partial Differ. Equ. 32, 1493–1510 (2007)

    Article  Google Scholar 

  17. Huo, Z., Jia, Y.: Well-posedness for the fourth-order nonlinear derivative Schrödinger equation in higher dimension. J. Math. Pures Appl. 96, 190–206 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ikeda, M., Kishimoto, N., Okamoto, M.: Well-posedness for a quadratic derivative nonlinear Schrödinger system at the critical regularity. J. Funct. Anal. 271, 747–798 (2016)

    Article  MathSciNet  Google Scholar 

  19. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53, 1336–1339 (1996)

    Article  Google Scholar 

  20. Karpman, V.I., Shagalov, A.G.: Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys. Rev. D 144, 194–210 (2000)

    MATH  Google Scholar 

  21. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in applied mathematics. Adv. Math. Suppl. Stud. 8, 93–128 (1983)

    Google Scholar 

  22. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  Google Scholar 

  23. Kenig, C.E., Ruiz, A.: A strong type estimate for the maximal function associated to the Schrödinger equation. Trans. Am. Math. Soc. 280, 239–246 (1983)

  24. Langer, J., Perline, R.: Poisson geometry of the filament equation. J. Nonlinear Sci. 1, 71–93 (1991)

  25. Mjøhus, E., Hada, T.: Soliton theory of quasi-parallel MHD waves. In: Hada, T., Matsumoto, H. (eds.) Nonlinear Waves and Chaos in Space Plasmas, Chap. 4. Terrapub, Tokyo (1997), pp. 121–169

  26. Molinet, L., Saut, J.C., Tzvetkov, N.: Ill-posedness issues for the Benjamin–Ono and related equations. SIAM J. Math. Anal. 33, 982–988 (2001)

    Article  MathSciNet  Google Scholar 

  27. Pausader, B.: Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn. Partial Differ. Equ. 4, 197–225 (2007)

    Article  MathSciNet  Google Scholar 

  28. Pornnopparath, D.: Small data well-posedness for derivative nonlinear Schrödinger equations. J. Differ. Equ. 265, 3792–3840 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ruzhansky, M., Wang, B., Zhang, H.: Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces. J. Math. Pures Appl. 105, 31–65 (2016)

    Article  MathSciNet  Google Scholar 

  30. Segata, J.: Well-posedness for the fourth order nonlinear Schrödinger type equation related to the vortex filament. Differ. Integr. Equ. 16, 841–864 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Segata, J.: Remark on well-posedness for the fourth order nonlinear Schrödinger type equation. Proc. Am. Math. Soc. 132, 3559–3568 (2004)

  32. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  33. Tao, T.: Nonlinear dispersive equation. Local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence, RI (2006)

  34. Tao, T.: Scattering for the quartic generalized Korteweg-de Vries equation. J. Differ. Equ. 232, 623–651 (2007)

    Article  Google Scholar 

  35. Wang, Y.: Global well-posedness for the generalised fourth-order Schödinger equation. Bull. Aust. Math. Soc. 85, 371–379 (2012)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y.Z., Ge, W.: Well-posedness of initial value problem for fourth order nonlinear Schrödinger Equation. Pure Appl. Math. Q. 8, 1047–1073 (2012)

    Article  MathSciNet  Google Scholar 

  37. Yang, J., Chen, X.-J.: Linearization operators of solutions in the derivative nonlinear Schrödinger hierarchy. Trends in Soliton Research 15–27 (2006)

Download references

Acknowledgements

The authors express deep gratitude to Professor Herbert Koch for many useful suggestions and comments. They also deeply grateful to Professor Kenji Nakanishi and Dr. Yohei Yamazaki for pointing out the completely integrable structure for the fourth order Schrödinger equation with third-order derivative nonlinearities. The first author is supported by Grant-in-Aid for Young Scientists Research (B) No. 17K14220 and Program to Disseminate Tenure Tracking System from the Ministry of Education, Culture, Sports, Science and Technology. The second author is supported by JST CREST Grant Number JPMJCR1913, Japan and Grant-in-Aid for Young Scientists Research (B) No. 15K17571 and Young Scientists Research (No. 19K14581), Japan Society for the Promotion of Science. The third author was supported by RIKEN Junior Research Associate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Hirayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation of an important 4NLS model with third order derivative nonlinearities

Derivation of an important 4NLS model with third order derivative nonlinearities

In this appendix, we derive the important 4NLS model with third order derivative nonlinearities (\(\gamma =3\)), that is, (1.1)–(1.5), from the second (\(n=2\)) of the derivative nonlinear Schrödinger (DNLS) hierarchy (1.6). To describe the DNLS hierarchy (1.6) more precisely, we give the definitions of several notations. For a complex-valued function \(u=u(x)\) on \({\mathbb {R}}\), we introduce a \({\mathbb {C}}^2\)-valued function \(U=U(x)\) on \({\mathbb {R}}\) defined by \(U:=(u,{\overline{u}}){}^{\text {T}}\). Let \(\sigma _3\) be the third Pauli matrix given by

$$\begin{aligned} \sigma _3:=\begin{pmatrix} 1 &{}\quad 0 \\ 0 &{}\quad -1 \\ \end{pmatrix}. \end{aligned}$$

For a \({\mathbb {C}}^2\)-valued smooth function \((v,w){}^{\text {T}}\) on \({\mathbb {R}}\), we introduce a first order differential operator \({\mathfrak {D}}_1\) defined by

$$\begin{aligned} {\mathfrak {D}}_1\begin{pmatrix} v \\ w \\ \end{pmatrix}(x) :=\sigma _3\frac{d}{dx}\begin{pmatrix} v \\ w \\ \end{pmatrix}(x) =\begin{pmatrix} v_x(x) \\ -w_x(x)\\ \end{pmatrix}. \end{aligned}$$

Moreover, for a \({\mathbb {C}}^2\)-valued smooth function \((v,w){}^{\text {T}}\) decaying 0 as \(|x|\rightarrow \infty \), we introduce a linear operator \({\mathfrak {D}}_2\) defined by

$$\begin{aligned} {\mathfrak {D}}_2\begin{pmatrix} v \\ w \\ \end{pmatrix}(x)&:=-U(x)\int _x^{\infty }U(y)^*\frac{d}{dy}\begin{pmatrix} v(y) \\ w(y) \\ \end{pmatrix}dy\\&=-\begin{pmatrix} u(x) \\ {\overline{u}}(x)\\ \end{pmatrix} \int _x^{\infty }\left\{ \overline{u(y)}v_y(y)+u(y)w_y(y)\right\} dy. \end{aligned}$$

We note that for a smooth function \(u=u(x)\) decaying 0 as \(|x|\rightarrow \infty \), the identity

$$\begin{aligned} {\mathfrak {D}}_2U(x) =\begin{pmatrix} |u(x)|^2u(x) \\ |u(x)|^2\overline{u(x)}\\ \end{pmatrix} \end{aligned}$$

holds for any \(x\in {\mathbb {R}}\). Indeed, this identity follows from the following identities

$$\begin{aligned} -\int _x^{\infty }\left\{ \overline{u(y)}u_y(y)+u(y)\overline{u_y(y)}\right\} =-\int _x^{\infty }\frac{d}{dy}|u(y)|^2dy=|u(x)|^2. \end{aligned}$$

For a smooth \({\mathbb {C}}^2\)-valued function \((v,w){}^{\text {T}}\) decaying 0 as \(|x|\rightarrow \infty \), we define the recursion operator \(\Lambda \) given by

$$\begin{aligned} \Lambda \begin{pmatrix} v \\ w\\ \end{pmatrix} :=\frac{i}{2}\left( {\mathfrak {D}}_1+i{\mathfrak {D}}_2\right) \begin{pmatrix} v \\ w\\ \end{pmatrix}. \end{aligned}$$
(A.1)

By using this operator, we can write the n-th of the derivative nonlinear Schrödinger hierarchy as

$$\begin{aligned} i\partial _t U(t,x)+\partial _x\left\{ (-2i\Lambda )^{2n-1}U\right\} (t,x)=0,\ \ \ (t,x)\in {\mathbb {R}}\times {\mathbb {R}}, \end{aligned}$$
(A.2)

where \(U=U(t,x)=\left( u(t,x),\overline{u(t,x)}\right) {}^{\text {T}}\) is a smooth solution decaying 0 as \(|x|\rightarrow \infty \) and \(n\in {\mathbb {N}}\).

In the following, we only consider the case of \(n=2\). By a simple calculation, the identity

$$\begin{aligned} (-2i\Lambda )^3&=({\mathfrak {D}}_1+i{\mathfrak {D}}_2)^3\\&={\mathfrak {D}}_1^3 -{\mathfrak {D}}_1{\mathfrak {D}}_2^2 -{\mathfrak {D}}_2({\mathfrak {D}}_1{\mathfrak {D}}_2+{\mathfrak {D}}_2{\mathfrak {D}}_1)\\&\quad +i\left\{ {\mathfrak {D}}_1({\mathfrak {D}}_1{\mathfrak {D}}_2+{\mathfrak {D}}_2{\mathfrak {D}}_1)+{\mathfrak {D}}_2{\mathfrak {D}}_1^2-{\mathfrak {D}}_2^3\right\} \end{aligned}$$

holds. By a simple calculation and taking the first component of the Eq. (A.2), we can derive the Eqs. (1.1) with (1.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirayama, H., Ikeda, M. & Tanaka, T. Well-posedness for the fourth-order Schrödinger equation with third order derivative nonlinearities. Nonlinear Differ. Equ. Appl. 28, 46 (2021). https://doi.org/10.1007/s00030-021-00707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00707-6

Keywords

Mathematics Subject Classification

Navigation